Homework 9

Analysis

Due: April 09, 2018

1. If T is a contraction mapping for $c<1$, show that we can estimate the distance of the fixed point x^{*} from the initial point x_{0} of the fixed point iteration by

$$
d\left(x^{*}, x_{0}\right) \leq \frac{1}{1-c} d\left(x_{1}, x_{0}\right)
$$

2. Using the contraction mapping theorem, show that the following differential equation has a unique solution

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=\frac{1}{4}\left(1+\sin ^{2}(x)\right) \\
x(0)=1
\end{array}\right.
$$

3. The following integral equation for $f:[-a, a] \mapsto \mathbb{R}$ arises in a model of the motion of gas particles on a line:

$$
f(x)=1+\frac{1}{\pi} \int_{-a}^{a} \frac{1}{1+(x-y)^{2}} f(y) d y
$$

for $-a \leq x \leq a$. Prove that this equation has a unique bounded, continuous solution for every $0<a<\infty$. Prove that the solution is nonnegative. What can you say if $a=\infty$?
4. Logistic Equation: The logistic map $T:[0,1] \mapsto[0,1]$ is defined by

$$
x_{n+1}=T x_{n}=r x_{n}\left(1-x_{n}\right)
$$

where $r>0$.
(a) Show that for $0<r<1$ there is a single fixed point x^{*} for this problem. Prove that if $0<r<1$ then for all $x_{0} \in[0,1]$

$$
\lim _{n \rightarrow \infty} T^{n} x_{0}=x^{*}
$$

(b) For what values of r will there be exactly two fixed points for this problem. For what range of r will at least one of these fixed points be stable.
(c) A period two orbit is a point x^{*} satisfying $T^{2} x^{*}=x^{*}$. For what ranges of r will there exist period two orbits. For what ranges of r will there exist a stable period two orbit?

