Lecture 8: Ordinary Differential Equations

\[\frac{du}{dt} = f(t, u) \]

\[f: \mathbb{R}^2 \rightarrow \mathbb{R} \text{ is continuous.} \]

A solution is a continuously differentiable function \(u: I \rightarrow \mathbb{R} \) such that

\[\frac{du}{dt} = f(t, u(t)), \]

where \(I \) is an open interval.

\(I = \mathbb{R} \) (local solution)

\(I = \mathbb{R} \) (global solution).

Examples:

1. \(\frac{du}{dt} = au \Rightarrow u(t) = u_0 e^{at} \)

 \(u(0) = u_0 \)

2. \(\frac{du}{dt} = u^3 \Rightarrow \int_{u_0}^u \frac{1}{u^3} du = \int_0^t dt \)

 \(u(0) = u_0 \Rightarrow \frac{1}{2} \left(\frac{1}{u_0^2} - \frac{1}{u^2} \right) = t \)

 \[\Rightarrow \frac{1}{2} \frac{1}{u^2} - 2t = \frac{1}{u_0^2} - \frac{1}{u^2} \]

 \[\Rightarrow 1 - 2tu_0^2 = \frac{1}{u_0^2} \]

 \[\Rightarrow u(t) = \frac{u_0}{\sqrt{1 - 2tu_0^2}} \]

Local Existence until \(t = \frac{1}{2u_0^2} \).
3. \(\frac{dv}{dt} = v^{3/2} \Rightarrow \int_0^v u^{-3/2} du = \int_0^t dt \)

\(u(0) = 0 \Rightarrow \frac{3}{2} (v^{3/2}) = t \)

\(\Rightarrow v^{3/2} = \frac{2}{3} t \)

\(\Rightarrow u(t) = \left(\frac{2}{3} \right)^{2/3} t^{3/2} \)

Not the only solution:

\(u(t) = \begin{cases} 0 & 0 \leq t \leq a - \alpha \ (a > 0), \\ \left(\frac{2}{3} \right)^{2/3} (t-a)^{3/2} & 0 \leq t < a \end{cases} \)

\(\rightarrow \text{Solutions are not unique.} \)

\[u(t) \]

\(\alpha \rightarrow t \)

\text{Theorem:} Suppose \(f(t, u) \) is a continuous function on \(\mathbb{R}^2 \).

Then for every \((t_0, u_0) \), there is an open interval \(I \subset \mathbb{R} \) that contains \(t_0 \), and a continuously differentiable function \(u: I \rightarrow \mathbb{R} \) that satisfies

\[\frac{dv}{dt} = f(t, u) \]

\[u(t_0) = u_0. \]
proof:

1. Pick $T_1 > 0$ and let

 $I_i = \{ x \in I ; |x-x_i| \leq T_1 \}$

 Partition I_i into $2N$ subintervals of length h.
 where $T_i = Nh$, and let

 $t_k = x_0 + kh$ for $-N \leq k \leq N$

 ![Graph showing partition into subintervals](image)

2. We construct an approximate solution $u_k(t)$.

 Let $u_k(x_0) = a_k$. Approximate

 \[
 \frac{du_k}{dt} \approx \frac{a_{k+1} - a_k}{h} = f(t_k, a_k).
 \]

 Hence,

 $u_k(t) = a_k + b(t-x_k)$.

 ![Graph showing piecewise linear function](image)

3. \[
 \left| \frac{du_k}{dt} - f(t, u_k(t)) \right| = \left| f(t_k, a_k) - f(t, a_k + b(t-x_k)) \right|
 \]
 \[
 \left| x - x_k \right| \leq h, \quad \left| a_k + b(t-x_k) - a_k \right| \leq |bk| h
 \]
4. We choose an L and $T \leq T_1$ such that for all ε the graph of u_ε is contained in R given by

$$R = \mathcal{C}(t, u) : |t - t_0| \leq T, |u - u_0| \leq L.$$

Let R_1 be defined by

$$R_1 = \mathcal{C}(t, u) : |t - t_0| \leq T_1, |u - u_0| \leq L$$

Let $M = \sup \delta f((t, u)) : (t, u) \in R_1, T = \min \{T_1, 5M\}$

5. R is compact which implies f is uniformly continuous.

$$|f(s, u) - f(t, v)| \leq \varepsilon \text{ for } |s - t| \leq \delta \text{ and } |u - v| \leq \varepsilon$$

6. Each u_ε is Lipschitz with $\text{Lip}(u_\varepsilon) \leq M$.

By Arzelà-Ascoli, $u_\varepsilon \to u$.

7. $u_\varepsilon(t) = u_\varepsilon(t_0) + \int_{t_0}^{t} \frac{du_\varepsilon}{ds} ds$

$$= u_\varepsilon(t_0) + \int_{x_0}^{x_\varepsilon(t)} f(s, u_\varepsilon(s)) ds + \int_{x_0}^{x_\varepsilon(t)} \int_{s}^{x_\varepsilon(t)} du_\varepsilon(s, u) du ds$$

Take limit as $\varepsilon \to 0$, $u(t) = u(t_0) + \int_{t_0}^{t} f(s, u(s)) ds.$
Theorem - Suppose \(\psi(t) \geq 0, \varphi(t) \geq 0 \) are continuously differentiable functions defined on \(0 \leq t \leq T \) and \(u_0 > 0 \). Then

\[
\varphi(t) \leq u_0 + \int_0^t \psi(s) u(s) \, ds.
\]

then

\[
\varphi(t) = u_0 \exp \left(\int_0^t \psi(s) \, ds \right).
\]

\[\text{Proof:}\]

Let \(u = u_0 + \int_0^t \psi(s) u(s) \, ds \). Then,

\[
\frac{du}{dt} = \psi(t) \cdot u(t) \leq \varphi(t) \cdot u(t)
\]

\[
\Rightarrow \frac{d}{dt}(\ln u) = \frac{\frac{du}{dt}}{u} \leq \varphi(t)
\]

\[
\Rightarrow \ln u(t) = \ln(u_0) + \int_0^t \psi(s) \, ds
\]

\[
\Rightarrow u(t) = u_0 \exp \left(\int_0^t \psi(s) \, ds \right).
\]

Theorem - If \(f \) is a Lipschitz continuous function of \(u \) uniformly in \(t \) then the solution of

\[
\frac{du}{dt} = f(t, u), \quad u(t_0) = u_0.
\]

is unique.

\[\text{Proof:}\]

Suppose \(u, v \) solve \(\psi \). Therefore,

\[
u(t) - v(t) = \int_0^t [f(s, u(s)) - f(s, v(s))] \, ds
\]

\[
\Rightarrow |u(t) - v(t)| \leq \int_0^t |f(s, u(s)) - f(s, v(s))| \, ds = \int_0^t |u(s) - v(s)| \, ds.
\]

Therefore, by Gronwall's inequality

\[
|u(t) - v(t)| \leq |u(t_0) - v(t_0)| \exp \left(\int_0^t |u(s) - v(s)| \, ds \right) = 0.
\]