MTH 225
Homework #5

Due Date: February 26, 2025

1. The set of vectors A = { [i] , [_11] } and B = { [;] , [;] } are a basis for R2.

(a) Compute [I(A,B)] and {I(B, A))].
(b) Show that [[(A, B)] and [I(B, A)] are inverses of each other.
2. Let V = Moy2(C) and W = M, «,,(C).
(a) Find a standard basis for V. You don’t need to prove anything, you can just list the
matrices. Hint: dim(V}) = 8.
(b) What is dim(W)?

(c) Let RE: V — My 2(R) be defined by RE(A) is the real valued matrix with components
(RE(A))i; = Re(A;;). Show that RE is a linear transformation.

(d) Find the matrix representation of RE with respect to the standard basis for V and the
standard basis for Mox2(R).

{(e) Find a basis for ker(RE) and im(A). Hint: You don’t have to do any row reduction or
set up any system of linear equations.

3. For A € M,,«,(C), with entries A;; € C, the trace function tr : Af,,x,(C) — C is defined by
tr(A) = Ai.
il

(a) Show that tr is a linear transformation.

(b) Explain why dim(im(tr)) = 2.

(¢) Determine dim(ker(tr}).

(d) Show that if A, B € M, x,,(C) then tr(AB) = tr(BA). Hint: Remember that if C = AB,
then the entries of C are given by Ci; =3¢, AixBy;.

4. Let A, B € M,,xn(C). Recall that A and B are similar if there exists a matrix P € A, x,(C)
such that A= PBP~!,
{(a) Show that if A is similar to B, then A — X[ is similar to B — AI for every A € C.

(b) Show that if there exists a A € C such that A — A[ is similar to B — A, then A is similar
to B.

{c) Show that if A is similar to B then tr(A) = tr(B).
(d) Show that if A is similar to B then det(A) = det B.



. Recall that a relationship on a set X, denoted ~, is called an equivalence relationship if the
following properties are satisfied

(a) Reflexivity: If a € X then a ~ a.

(b} Symmetry: If a.b € X then a ~ b if and only if b ~ a.

(¢} Transitivity: If a.b.c€ X and a ~ b and b ~ ¢ then a ~ ¢c.
Show that on Af,«,(C) similarity between matrices is an equivalence relationship.
. Let A € A, xa(C).

(a) Show that A is similar to [ if and only if A = 1.
{b) Show that A is similar to 0 if and only if A = 0.

. Let A € Myxn(C).

(a) Show that the linear system Ax = y has a unique solution for some y € C" if and only
if it has a solution for all y € C".

(b) Show that the linear system Ax = y has a unique solution for all y € C" if and only if
the only solution to Ax = 0is x = 0.
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