MTH 225 Homework #2

Due Date: January 29, 2025

- 1. If z = 1 + 2i, w = 2 i, and $\zeta = 4 + 3i$, write the following complex expressions in the form a + bi, where $a, b \in \mathbb{R}$.
 - (a) z + 3w
 - (b) $-2w + \overline{\zeta}$
 - (c) z^2
 - (d) $w^3 + w$
 - (e) $Im(\zeta^{-1})$
 - (f) w/z
 - (g) $\zeta^2 + 2\overline{\zeta} + 3$
- 2. Write the given complex number in the form a + bi, where $a, b \in \mathbb{R}$.
 - (a) i^{101}
 - (b) $\frac{1+2i}{5-3i}$
 - (c) $e^{i\pi/6}$
 - (d) $(1+i\sqrt{3})^{10}$
- 3. Write the given complex number in the form a + bi, where $a, b \in \mathbb{R}$.
 - (a) $e^{-i\pi/2}$ (b) $\frac{e^{1+3\pi i}}{e^{-1+\pi/2i}}$
 - $(c) \quad \frac{e^{3i} e^{-3i}}{2i}$

(d)
$$e^{e}$$

- 4. Let $z \in \mathbb{C}$ and assume $z \neq 0$. Prove the following
 - (a) $|\operatorname{Re}(z)| \le |z|$ and $|\operatorname{Im}(z)| \le |z|$.
 - (b) $\text{Re}(z) = (z + \overline{z})/2$ and $\text{Im}(z) = -i(z \overline{z})/2$.
 - (c) |z| = 1 if and only if $1/z = \overline{z}$.
 - (d) If |z| = 1 and $z \neq 1$, then $\text{Re}((1-z)^{-1}) = 1/2$.

- 5. Compute the following
 - (a) $5 + 3^4$ in \mathbb{Z}_{11} .
 - (b) 7^{-1} in \mathbb{Z}_{13} .
 - (c) 3^{101} in \mathbb{Z}_5 .
 - (d) -16 in \mathbb{Z}_{19} .
 - (e) $7 \cdot (3+13)$ in \mathbb{Z}_{11} .
 - (f) 8^{-1} in \mathbb{Z}_{15} .
- 6. Find the inverse of the following matrix:

$$\begin{bmatrix} 2-3i & 4\\ 1 & 2 \end{bmatrix}.$$

- 7. Show that 10 does not have a multiplicative inverse in \mathbb{Z}_{15} .
- 8. Find all solutions to the equation $x^2 = 1$ in \mathbb{Z}_8 .
- 9. Find a quadratic polynomial $x^2 + bx + c$ over \mathbb{Z}_6 which has four distinct roots in \mathbb{Z}_6 .
- 10. Find two nonzero elements in \mathbb{Z}_{14} whose product is 0.
- 11. Solve the following system of linear equations over \mathbb{Z}_3 :

$$2x + y = 1,$$

$$2x + 2y = 2.$$

12. Find all solutions to the following system of linear equations over \mathbb{Z}_5 :

$$2w + 2x + y + z = 4,$$

$$w + x + 3y + z = 1,$$

$$x + y = 1.$$

Remember, in \mathbb{Z}_5 you should only have a finite number of solutions.

13. Find the inverse of the following matrix over \mathbb{Z}_3 :

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$