MTH 225 Homework #4

Due Date: February 12, 2025

- 1. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}$ be vectors in a vector space V. Prove or provide a counterexample: if \mathbf{z} is a linear combination of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ then \mathbf{w} is a linear combination of $\mathbf{u}, \mathbf{v}, \mathbf{z}$.
- 2. Suppose $\mathbf{f}(t)$ and $\mathbf{g}(t)$ are functions from \mathbb{R} to \mathbb{R}^2 .
 - (a) Prove that if $\mathbf{f}(t_0)$ and $\mathbf{g}(t_0)$ are linearly independent as vectors in \mathbb{R}^2 for some $t_0 \in \mathbb{R}^2$ then $\mathbf{f}(t)$ and $\mathbf{g}(t)$ are linearly independent functions.
 - (b) Show that $\mathbf{f}(t) = \begin{bmatrix} 1 \\ t \end{bmatrix}$ and $\mathbf{g}(t) = \begin{bmatrix} 2t-1 \\ 2t^2-t \end{bmatrix}$ are linearly independent functions.
 - (c) Show that $\mathbf{f}(t_0) = \begin{bmatrix} 1 \\ t_0 \end{bmatrix}$ and $\mathbf{g}(t_0) = \begin{bmatrix} 2t_0 1 \\ 2t_0^2 t_0 \end{bmatrix}$ are linearly dependent for all $t_0 \in \mathbb{R}$.

Parts (b) and (c) show that the converse of (a) is not true in general.

3. The Wronskian of a pair of differentiable functions f(x), g(x) defined by

$$W[f(x), g(x)] = \det \left(\begin{bmatrix} f(x) & g(x) \\ f'(x) & g'(x) \end{bmatrix} \right).$$

- (a) Prove that if f and g are linearly dependent then W[f(x), g(x)] = 0.
- (b) Use part (a) to prove that if $W[f(x), g(x)] \neq 0$ then f and g are linearly independent.
- (c) Let $f(x) = x^3$ and $g(x) = |x|^3$. Show that f and g are linearly independent but W[f(x), g(x)] = 0. Why does this not contradict parts (a) and (b)?
- 4. Consider the set $\mathcal{A} = \{1 + x^2, x + x^2, 1 + 2x + x^2\}.$
 - (a) Prove that \mathcal{A} is a basis for $P_2(\mathbb{R})$.
 - (b) Find the coordinates of $p(x) = 1 + 4x + 7x^2$ in this basis.
- 5. Let $S_{n \times n}(\mathbb{R})$ denote the subspace of $M_{2 \times 2}(\mathbb{R})$ consisting of all symmetric $n \times n$ matrices with complex entries.
 - (a) Show that a basis for $S_{2\times 2}(\mathbb{R})$ is given by

$$\mathcal{A} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}.$$

(b) Find a basis for $S_{3\times 3}(\mathbb{R})$ and determine dim $(S_{3\times 3}(\mathbb{R}))$. You do not have to prove that your choice is a basis.

6. A real valued matrix is said to be a *semi-magic square* if its row sums and column sums, i.e, the sum of entries in an individual row or column, all add up to the sum number. An example is

$$M = \begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix}.$$

- (a) Prove that S, the set of all 3×3 semi-magic squares, is a subspace of $M_{3\times 3}(\mathbb{R})$.
- (b) Find a basis for S. You do not have to prove that your choice is a basis and, as a hint, $\dim(S) = 6$.
- 7. Find a linear transformation $T : \mathbb{R}^2 \mapsto \mathbb{R}^2$ such that

$$T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}2\\-1\end{bmatrix}$$
 and $T\left(\begin{bmatrix}2\\1\end{bmatrix}\right) = \begin{bmatrix}0\\-1\end{bmatrix}$

8. Consider the map $T: P_3(\mathbb{R}) \to \mathbb{R}^4$ defined by

$$T(a_3x^3 + a_2x^2 + a_1 + a_0) = \begin{bmatrix} a_1 \\ -a_1 \\ a_2 \\ -a_2 \end{bmatrix}.$$

- (a) Show that T is a linear transformation.
- (b) Find bases for $\ker(T)$ and $\operatorname{im}(T)$.
- 9. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$ be 2 × 2 real valued matrices. For each of the following functions, prove that $T : M_{2 \times 2}(\mathbb{R}) \mapsto M_{2 \times 2}(\mathbb{R})$ is a linear transformation and then find its 4×4 matrix representation with respect to the standard basis:

$$\mathcal{A} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

- (a) T[X] = AX.
- (b) R[X] = XB.
- (c) K[X] = AXB.