MTH 225 Homework #5

Due Date: February 26, 2025

- 1. The set of vectors $\mathcal{A} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$ and $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$ are a basis for \mathbb{R}^2 .
 - (a) Compute $[I(\mathcal{A}, \mathcal{B})]$ and $[I(\mathcal{B}, \mathcal{A})]$.
 - (b) Show that $[I(\mathcal{A}, \mathcal{B})]$ and $[I(\mathcal{B}, \mathcal{A})]$ are inverses of each other.
- 2. Let $V = M_{2 \times 2}(\mathbb{C})$ and $W = M_{n \times n}(\mathbb{C})$.
 - (a) Find a standard basis for V. You don't need to prove anything, you can just list the matrices. **Hint:** $\dim(V) = 8$.
 - (b) What is $\dim(W)$?
 - (c) Let RE : $V \mapsto M_{2 \times 2}(\mathbb{R})$ be defined by RE(A) is the real valued matrix with components $(\text{RE}(A))_{ij} = \text{Re}(A_{ij})$. Show that RE is a linear transformation.
 - (d) Find the matrix representation of RE with respect to the standard basis for V and the standard basis for $M_{2\times 2}(\mathbb{R})$.
 - (e) Find a basis for ker(RE) and im(A). **Hint:** You don't have to do any row reduction or set up any system of linear equations.
- 3. For $A \in M_{n \times n}(\mathbb{C})$, with entries $A_{ij} \in \mathbb{C}$, the trace function $\operatorname{tr} : M_{n \times n}(\mathbb{C}) \mapsto \mathbb{C}$ is defined by

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}.$$

- (a) Show that tr is a linear transformation.
- (b) Explain why $\dim(\operatorname{im}(\operatorname{tr})) = 2$.
- (c) Determine $\dim(\ker(tr))$.
- (d) Show that if $A, B \in M_{n \times n}(\mathbb{C})$ then $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. **Hint:** Remember that if C = AB, then the entries of C are given by $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$.
- 4. Let $A, B \in M_{n \times n}(\mathbb{C})$. Recall that A and B are similar if there exists a matrix $P \in M_{n \times n}(\mathbb{C})$ such that $A = PBP^{-1}$.
 - (a) Show that if A is similar to B, then $A \lambda I$ is similar to $B \lambda I$ for every $\lambda \in \mathbb{C}$.
 - (b) Show that if there exists a $\lambda \in \mathbb{C}$ such that $A \lambda I$ is similar to $B \lambda I$, then A is similar to B.
 - (c) Show that if A is similar to B then tr(A) = tr(B).
 - (d) Show that if A is similar to B then det(A) = det B.

- 5. Recall that a relationship on a set X, denoted \sim , is called an equivalence relationship if the following properties are satisfied
 - (a) **Reflexivity:** If $a \in X$ then $a \sim a$.
 - (b) **Symmetry:** If $a, b \in X$ then $a \sim b$ if and only if $b \sim a$.
 - (c) **Transitivity:** If $a, b, c \in X$ and $a \sim b$ and $b \sim c$ then $a \sim c$.

Show that on $M_{n \times n}(\mathbb{C})$ similarity between matrices is an equivalence relationship.

- 6. Let $A \in M_{n \times n}(\mathbb{C})$.
 - (a) Show that A is similar to I if and only if A = I.
 - (b) Show that A is similar to 0 if and only if A = 0.
- 7. Let $A \in M_{n \times n}(\mathbb{C})$.
 - (a) Show that the linear system $A\mathbf{x} = \mathbf{y}$ has a unique solution for some $\mathbf{y} \in \mathbb{C}^n$ if and only if it has a solution for all $\mathbf{y} \in \mathbb{C}^n$.
 - (b) Show that the linear system $A\mathbf{x} = \mathbf{y}$ has a unique solution for all $\mathbf{y} \in \mathbb{C}^n$ if and only if the only solution to $A\mathbf{x} = 0$ is $\mathbf{x} = 0$.