MTH 225 Homework #6

Due Date: March 05, 2025

- 1. Suppose $A \in M_{n \times n}(\mathbb{R})$ has eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 3$ with corresponding eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Find the matrix representation of the linear transformation $L[\mathbf{v}] = A\mathbf{u}$ with respect to following bases.
 - (a) The standard basis.
 - (b) The basis of eigenvectors.
 - (c) The basis $\mathcal{A} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix} \right\}.$
- 2. Let $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n$ and $A = \mathbf{u}\mathbf{v}^T$.
 - (a) Find the columns of A in terms of \mathbf{u} and \mathbf{v} .
 - (b) Show that rank(A) = 1.
- 3. Suppose $P \in M_{n \times n}(\mathbb{C})$ satisfies $P^2 = P$. Find all of the possible eigenvalues of P.
- 4. Suppose $N \in M_{n \times n}(\mathbb{C})$ satisfies $N^k = 0$ for some $k \in \mathbb{N}$. Find all possible eigenvalues of N.
- 5. Suppose $A \in M_{n \times n}(\mathbb{C})$ satisfies $A^4 = I$. Find all possible eigenvalues of A.
- 6. Suppose $A \in M_{3\times 3}(\mathbb{R})$ has $\lambda = 1$ as its only eigenvalue.
 - (a) What is the algebraic multiplicity of λ ?
 - (b) Find an example of such a matrix A in which the geometric multiplicity of A is 1.
 - (c) Find an example of such a matrix A in which the geometric multiplicity of A is 2.
 - (d) Find an example of such a matrix A in which the geometric multiplicity of A is 3
- 7. Suppose $T: V \mapsto V$ is an invertible linear transformation and suppose $\lambda \neq 0$ is an eigenvalue with corresponding eigenvector **v**.
 - (a) Prove that $\lambda \neq 0$.
 - (b) Prove that $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} with corresponding eigenvector **v**.
- 8. Suppose that $A \in M_{n \times n}(\mathbb{C})$ is diagonalizable.
 - (a) Show that cA + dI, where c, d are any scalars, is diagonalizable.
 - (b) Show that A^2 is diagonlizable.
 - (c) Give an example of a matrix A that is not diagonalizable but A^2 is.

- 9. Suppose $A, B \in M_{n \times n}(\mathbb{C})$ are diagonlizable matrices with the same eigenspaces (but not necessarily the same eigenvalues). Prove that AB = BA.
- 10. Suppose $A \in M_{n \times n}(\mathbb{C})$ is a diagonlizable matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$.
 - (a) Prove that $det(A) = \lambda_1 \cdots \lambda_n$.
 - (b) Prove that $tr(A) = \lambda_1 + \ldots + \lambda_n$.
 - (c) If $A \in M_{2 \times 2}(\mathbb{C})$ is a diagonlizable, show that its eigenvalues λ_1, λ_2 satisfy

$$\lambda_{1,2} = \frac{1}{2} \left(\operatorname{tr}(A) \pm \sqrt{\operatorname{tr}(A)^2 - 4 \operatorname{det}(A)} \right).$$

Hint: You can use results from previous homeworks.

- 11. Suppose $T: P_4(\mathbb{R}) \mapsto P_4(\mathbb{R})$ is defined by $T(p(x)) = x \frac{dp}{dx}$.
 - (a) Show that T is a linear transformation.
 - (b) Find a basis for $\ker(T)$.
 - (c) Find a basis for im(T).
 - (d) Find all eigenvectors and eigenvalues of T. Hint: Don't try to do this using matrices.
 - (e) Find the matrix representation of T with respect to the standard basis $S = \{1, x, x^2, x^3, x^4\}$.
- 12. Define the shift map $S: \mathbb{C}^n \mapsto \mathbb{C}^n$ by

$$S\left(\left[a_{1}, a_{2}, \dots, a_{n-1}, a_{n}\right]^{T}\right) = \left[a_{2}, a_{3}, \dots, a_{n}, a_{1}\right]^{T}.$$

- (a) Prove that S is a linear transformation.
- (b) Prove that the vectors $\omega_0, \omega_1, \ldots, \omega_n$ defined by

$$\omega_k = \left[1, e^{2k\pi i/n}, e^{4k\pi i/n}, \dots, e^{2(n-1)k\pi i/n}\right]^T,$$

are eigenvectors of S. What are the corresponding eigenvalues?

- (c) Find the matrix representation of S with respect to the standard basis.
- 13. Let $T: \mathbb{R}^{\infty} \mapsto \mathbb{R}^{\infty}$ and $S: \mathbb{R}^{\infty} \mapsto \mathbb{R}^{\infty}$ be defined by

$$T(a_0, a_1, a_2, \ldots) = (0, a_0, a_1, a_2, \ldots)$$
 and $S(a_0, a_1, a_2, \ldots) = (a_1, a_2, a_3, \ldots)$.

- (a) Show that T and S are linear transformations.
- (b) Show that $T \circ S$ is the identity transformation but $S \circ T$ is not.
- (c) Show that T has no eigenvalues.
- (d) Find all of the eigenvalues and eigenvectors of S.