MTH 225 Homework #8

Due Date: March 26, 2025

1. Consider the following vectors

$$\mathbf{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \mathbf{u}_2 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \mathbf{u}_3 = \frac{1}{\sqrt{6}} \begin{bmatrix} -1\\1\\2 \end{bmatrix}$$

- (a) Show that \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 forms an orthonormal basis for \mathbb{R}^3 with respect to the standard inner product.
- (b) Find the coordinates of $\mathbf{v} = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}^T$ with respect to the above basis. **Hint:** Do not solve a 3 × 3 system of equations.
- 2. Let $\mathbf{u}_1, \ldots, \mathbf{u}_n$ be an orthonormal system in \mathbb{C}^n with respect to the standard complex inner product. If $\mathbf{v} \in \mathbb{C}^n$, prove that

$$\|\mathbf{v}\|^2 = \sum_{i=1}^n |\langle \mathbf{v}, \mathbf{u}_i \rangle|^2,$$

where $|\cdot|$ denotes the complex modulus.

- 3. Let $A \in M_{n \times n}(\mathbb{C})$. In these problems we assume the standard complex inner product on \mathbb{C}^n .
 - (a) Prove for all $\mathbf{v}, \mathbf{w} \in \mathbb{C}^n$ that $\langle A\mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, A^*\mathbf{w} \rangle$.
 - (b) Prove that $\ker(A^*) = (\operatorname{im}(A))^{\perp}$.
 - (c) Prove that $\operatorname{im}(A^*) = (\ker(A))^{\perp}$
 - (d) Prove that $\ker(A) = (\operatorname{im}(A^*))^{\perp}$
 - (e) Prove that $im(A) = (ker(A^*))^{\perp}$.
 - (f) Let $\mathbf{b} \in \mathbb{C}^n$. Prove there exists $\mathbf{v} \in \mathbb{C}^n$ that satisfies $A\mathbf{v} = \mathbf{b}$ if and only if $\langle \mathbf{b}, \mathbf{w} \rangle = 0$ for all \mathbf{w} satisfying $A^*\mathbf{w} = 0$.
- 4. Let $A \in M_{n \times n}(\mathbb{C})$. In these problems we assume the standard complex inner product on \mathbb{C}^n .
 - (a) Prove that $\ker(A) \subseteq \ker(A^*A)$
 - (b) Prove that $\ker(A^*A) \subset \ker(A)$. **Hint:** If $\mathbf{v} \in \ker(A^*A)$, what is $\langle A\mathbf{v}, A\mathbf{v} \rangle$?
 - (c) Prove that $\operatorname{rank}(A^*A) = \operatorname{rank}(A)$.
 - (d) Prove that the columns of A are linearly independent if and only if A^*A is invertible.

- 5. Find an orthonormal basis, with respect to the standard inner product, for the following subspaces of \mathbb{R}^4 :
 - (a) The span of the vectors

1		[-1]		$\begin{bmatrix} 2 \end{bmatrix}$	
1		0		-1	
-1	,	1	,	2	,
0		1		1	

(b) The kernel of the matrix

$$A = \begin{bmatrix} 2 & 1 & 0 & -1 \\ 3 & 2 & -1 & -1 \end{bmatrix}.$$

(c) The image of the matrix

$$B = \begin{bmatrix} 1 & -2 & 2\\ 2 & -4 & 1\\ 0 & 0 & -1\\ -2 & 4 & 5 \end{bmatrix}$$

(d) The set of all vectors orthogonal to the vector

$$\begin{bmatrix} 1\\1\\-1\\-1\end{bmatrix}.$$

6. Let $V = P_{\infty}(\mathbb{R})$ be the vector space of polynomials of arbitrary large degree and $S \subset V$ be defined by $S = \text{span}\{1, t, t^2\}$. On V define the inner product $\langle \cdot, \cdot \rangle$ by

$$\langle f,g\rangle = \int_0^\infty f(t)g(t)e^{-t}dt.$$

(a) Use integration by parts to show that for all $k \in \mathbb{N}$ that

$$\int_0^\infty t^k e^{-t} dt = k!.$$

- (b) With respect to this inner product, prove that for $m, m \in \mathbb{N}$ that $\langle t^m, t^n \rangle = (m+n)!$ and $||t^m||^2 = (2m)!$.
- (c) With respect to this inner product, find a set of orthonormal functions $\{q_0, q_1, q_2\}$ such that span $\{q_0, q_1, q_2\} = S$.
- 7. Show $A \in M_{2 \times 2}(\mathbb{C})$ is unitary with respect to the standard complex inner product if and only if

$$A = \begin{bmatrix} a & b \\ -\overline{b}e^{i\phi} & \overline{a}e^{i\phi} \end{bmatrix},$$

for some $a, b \in \mathbb{C}$ satisfying $|a|^2 + |b|^2 = 1$ and $\phi \in \mathbb{R}$.

8. Suppose $A \in M_{n \times n}(\mathbb{C})$ is a unitary matrix with respect to the standard complex inner product. Prove that $A\mathbf{v} = \mathbf{b}$ has a solution if and only if $\mathbf{b} \in (\ker(A))^{\perp}$.