MTH 352/652 Homework #2

Due Date: January 31, 2025

- 1. Find all real valued solutions to the two-dimensional Laplace equation $u_{xx} + u_{yy} = 0$ that depend on the radial coordinate $r = \sqrt{x^2 + y^2}$.
- 2. Suppose u(x,t) and v(x,t) are infinitely differentiable functions in both x and t that satisfy the following system of equations:

 $u_t = v_x,$ $v_t = u_x.$

- (a) Show that both u and v are solutions to the wave equation $u_{tt} = u_{xx}$, $v_{tt} = v_{xx}$. Which result from multivariable calculus do you need to justify the conclusion?
- (b) Conversely, given a solution u(x,t) to the wave equation, can you construct a function v(x,t) such that u(x,t), v(x,t) solve $u_t = v_x$ and $v_t = u_x$.
- 3. Classify the following differential equations as either (i) homogenous linear, (ii) inhomogeneous linear, or (iii) nonlinear.
 - (a) $u_t = x^2 u_{xx} + 2x u_x$
 - (b) $-u_{xx} u_{yy} = \cos(u)$
 - (c) $u_{xx} + 2yu_{yy} = 3$
 - (d) $u_t + uu_x = 3u$
 - (e) $e^y u_x = e^x u_y$
 - (f) $u_t = 5u_{xxx} + x^2u + x$
- 4. Suppose L and M are linear operators. Prove that the following are also linear operators:
 - (a) L M.
 - (b) 3L.
 - (c) fL, where f is an arbitrary function.
 - (d) $L \circ M$.
- 5. The displacement u(x,t) of a forced violin string is modeled by the PDE $u_{tt} = 4u_{xx} + F(x,t)$. When $F(x,t) = \cos(x)$, the solution is $u(x,t) = \cos(x-2t) + \frac{1}{4}\cos(x)$, while when $F(x,t) = \sin(x)$, the solution is $u(x,t) = \sin(x-2t) + \frac{1}{4}\sin(x)$. Find a solution when the forcing function F(x,t) is
 - (a) $\cos(x) 5\sin(x)$,
 - (b) $\sin(x-3)$.

- 6. Find the general solution to the following partial differential equations
 - (a) $u_x = 0$
 - (b) $u_t = 1$
 - (c) $u_t = x t$
 - (d) $u_t + 3u = 0$
 - (e) $u_x + tu = 0$
 - (f) $u_{tt} + 4u = 0$

7. Solve the following initial value problems and graph the solutions at times t = 0, 1, 2, 3.

- (a) $u_t 3u_x = 0, u(x, 0) = e^{-x^2}$
- (b) $u_t + 2u_x = 0$, $u(x, -1) = x/(1+x^2)$
- (c) $u_t + u_x + \frac{1}{2}u = 0, u(x, 0) = \tan^{-1}(x)$
- (d) $u_t 4u_x + u = 0, u(x, 0) = 1/(1 + x^2)$
- 8. Let $c \neq 0$. Prove that if the initial data satisifies $u(x,0) = v(x) \to 0$ as $x \to \pm \infty$, then, for each fixed x, the solution to the advection equation $u_t + cu_x = 0$ satisfies $u(x,t) \to 0$ as $t \to \infty$.
- 9. Solve the following initial value problem $u_t + 2u_x = \sin(x)$, $u(x, 0) = \sin(x)$.
- 10. Consider the partial differential equation $u_t + u_x + u^2 = 0$, u(x, 0) = f(x) for $x \in \mathbb{R}$ and $t \ge 0$.
 - (a) Find the general formula for the solution to this PDE.
 - (b) Show that if f(x) is positive and bounded, i.e., $0 \le f(x) \le M$, then the solution exists for all t > 0, and $u(x, t) \to 0$ as $t \to \infty$.
 - (c) On the other hand, if f(x) is negative somewhere, then show that the solution blows up in finite time: $\lim_{t\to\tau^-} u(y,t) = -\infty$ for some $\tau > 0$ and some $y \in \mathbb{R}$.
 - (d) Find a formula for the earliest blow-up time $\tau^* > 0$.
- 11. Consider the initial value problem $u_t xu_x = 0$, $u(x,0) = (x^2 + 1)^{-1}$.
 - (a) Write down the differential equation satisfied by the characteristic curves and sketch the curves. Note, you don't have to find an explicit formula for the characteristic curves.
 - (b) Sketch the solution u(x, t) at times t = 0, 1, 5, 10.
 - (c) Compute $\lim_{t\to\infty} u(x,t)$.
- 12. Consider the initial value problem $u_t + (1 + x^2)u_x = 0$, u(0, x) = f(x).
 - (a) Write down the differential equation satisfied by the characteristic curves and find an explicit solution for the characteristic curves.
 - (b) Sketch the characteristic curves.
 - (c) Write down the general solution u(x, t).
 - (d) Discuss properties of your solution as t increases.