MTH 352/652 Homework #6

Due Date: March 07, 2025

- 1. Consider the function $f(x) = x^r$, where $r \in \mathbb{R}$.
 - (a) For what values of r is $f(x) \in L^2[0,1]$.
 - (b) For what value of r is $f(x) \in L^2[1,\infty)$.
 - (c) For what values of r is $f(x) \in L^2[0, \infty)$.
- 2. Consider the sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$ defined by

$$f_n(x) = \begin{cases} n & \text{if } -\frac{1}{n} < x < 0 \text{ or } 0 < x < \frac{1}{n} \\ 0 & \text{if } x = 0 \text{ or } |x| > \frac{1}{n} \end{cases}.$$

- (a) Explain why $\lim_{n\to\infty} f_n(x)=0$ pointwise. Don't go overboard with this. Drawing a picture is fine.
- (b) Show that f_n does not converge to 0 in L^1 or L^2 .
- 3. Consider the sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$ defined by

$$f_n(x) = \begin{cases} n^r & \text{if } -\frac{1}{n} < x < 0 \text{ or } 0 < x < \frac{1}{n} \\ 0 & \text{if } x = 0 \text{ or } |x| > \frac{1}{n} \end{cases},$$

where $r \in \mathbb{R}$.

- (a) For what values of r does $\lim_{n\to\infty} f_n(x) = 0$ pointwise.
- (b) For what values of r does f_n converge to 0 in L^1 .
- (c) For what values of r does f_n converge to 0 in L^2 .

4. Consider the following infinite series

$$\sum_{n=1}^{\infty} (1-x)x^{n-1}, \ 0 < x < 1.$$

(a) Find a simple formula for the partial sums

$$f_m(x) = \sum_{n=1}^{m} (1-x)x^{n-1}$$

by using a geometric series.

- (b) Show that the series converges pointwise to some function f(x).
- (c) Show that the convergence is not uniform.
- (d) Show that the series converges to f(x) in L^2 .
- 5. Consider the following infinite series

$$\sum_{n=1}^{\infty} \left(\frac{n}{1 + n^2 x^2} - \frac{n-1}{1 + (n-1)^2 x^2} \right), \ 0 < x < 1.$$

(a) Find a simple formula for the partial sums

$$f_m(x) = \sum_{n=1}^m \left(\frac{n}{1+n^2x^2} - \frac{n-1}{1+(n-1)^2x^2} \right).$$

- (b) Show that the series converges pointwise to some function f(x).
- (c) Show that the convergence is not uniform.
- (d) Show that the series does not converge in L^2 .
- 6. Consider the set of functions

$$\mathcal{A} = \left\{1, \cos\left(\frac{\pi x}{L}\right), \cos\left(\frac{2\pi x}{L}\right), \ldots\right\}.$$

- (a) Verify that A forms an orthogonal system on the interval [0, L], where L > 0 is a constant.
- (b) If

$$f(x) = \sum_{n=0}^{\infty} c_n \cos\left(\frac{n\pi x}{L}\right),$$

in the L^2 sense, what is the formula for c_n ? This series is called the Fourier cosine series for f on [0, L].

2

7. Let f(x) be the piecewise function defined by

$$f(x) = \begin{cases} 0, & 0 < x < 1 \\ 1, & 1 < x < 3 \end{cases}.$$

- (a) Find the first four nonzero terms of the Fourier cosine series of f.
- (b) What is the pointwise limit of the partial sums of this series on $0 \le x \le 3$?
- (c) Why does this series converge to f(x) in the L^2 sense?
- (d) Find the value of the sum

$$1 + \frac{1}{2} - \frac{1}{4} - \frac{1}{5} + \frac{1}{7} + \frac{1}{8} - \frac{1}{10} - \frac{1}{11} + \dots$$

8. If c_n are the Fourier coefficients of f with respect to an orthonormal set of functions $\{f_n\}$, show that

$$\left\langle \sum_{i=1}^{N} c_n f_n, f - \sum_{i=1}^{N} c_n f_n \right\rangle = 0.$$