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Theorem 2.20 implies that E' is the complement of E1, since the generalized eigenvec· 
tors span 1R3

• To demonstrate this, find generalized eigenvectors by solving 

(A-01)2 v = ( ! ! ! ) ( : ) = 0. 
-2 -2 -2 C 

This is equivalent to the single equation a+ b + c = 0, so that there are two arbitrary 
constants in v (we knew this already since dim(£') = 2). One representation of the 
solution is v =av2 + bv3, where v2 =(1,0,-1)7 and v3 =(0, 1,-1)7. Consequently, 

Finally we ask, is the system linearly stable? For this to be the case, the nilpotent 
part of A must vanish, or alternatively there must be two independent eigenvectors 
corresponding to ,l = 0. The eigenvalue problem (A- 0l)v = 0 has only a single 
solution, v = ( 1, 0,-1 )7. Since the nilpotent part is nonzero our system is not linearly 
stable. This is confirmed by finding 

S=PAP-'=( j j J )(-i ~ ~ )i( _; -l :l) 
=( =: =i =i), 

giving a nilpotent part 

(

-1 0 -1 ) 
N=A-S= 0 0 0 , 

1 0 1 

which is easily seen to satisfy N2 = 0. Finally, the exponential is 

e1A=Pe1ll.p-1(I+tN}=! 2e-21 -2 2e-21 2e-21 -2 , 
( 

e-21 +1-2t e-21 -1 e-21 -1-2t) 

2 -e-21 + 1+2t -e-21 + 1 -e-21 +3+2t 

confirming that this system is unstable since there are terms that grow linearly in time. 
In particular, if x0 = (1,0,0}7, then x(t}-+ 2t(-1,0,1}7-+ oo. Note that not all 
solutions are un~ounded. For example, if x

0 
= (0,1,0}7, then x(t)-+ (-1,0,1)7. 

Nevertheless, a srngle unbounded solution is enough to declare the system unstable. 
I 

2.8 • Nonautonomous Linear Systems and Floquet Theory 
A linear physical system that is externally forced can often be modeled by the affine 
set of ODEs, 

x=Ax+f(t). 
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Such d~rential cq~.uions.can ~ e.asily solved using the •integrating factor" method; 
sec Excn:1se 17. It 1s considerably more difficult to solve a linear system when the 
matrix A depends upon time, 

x=A(t)x, x(t0 )=x
0

• (2.45) 

Nooautonomous ~uati<;>ns Like these can arise in mechanical systems if the forcing 
changes the cffu.-i1ve sprrng constants; for example, a person pumping his legs on a 
~g vo.rill change the effccti~ length ~f t~e pendulum and thereby modulate the co­
efficient g / I that governs the Linear 0SC1Uat1on frequency. Equations of the form (2.45) 
also occur as the lincariz.ation of the dynamics about a periodic orbit of period T. In 
this case the matri..-,: A is a periodic function of time, A( t + T) = A( t ). Gaston Floquet 
de,-clopcd the theory of the solutions of such systems in the 188Os (Chicane 1999, §2.4; 
Floquc-t 1883; Yakubovitch and Starzhinskii 1975, Chapter 5). 

To solve (2.45), it is convenient to consider a matrix differential equation of the 
form (2.33), replacing the vector x(t) by a matrix. The general solution is most con­
veniently represented in terms of the principal/und,unenta/ 1114trix solution, which is 
the solution 4'(t, t0) of the matrix initial value problem 

d 
dt 4i=A(t)4', 4.i(t0 ,t0 )=l. (2.46) 

Here we have added a second argument to 4i to indicate that the initial condition is 
applied at time t

0
• As for the autonomous qse, the solution of the original system 

with initial value x( t
0

) = x
0 

is simply given by x( t) = 4i( t, t
0

)x
0

• Thus, if we can find 
4'( t, t0), we also have the general solution to (2.45). We will ignore for the moment 
the more delicate question of the existence and uniqueness of 4.i; this will follow_ more 
generally from Theorem 3.24, requiring only that A(t) be a continuous funcuon of 
time. Uniqueness implies that the fundamental matrix solution obeys the relation 

4.i(t, r)=4>(t,s)4.i(s, r) (2.47) 

for all t, s, r E R. 
When A is constant 4.i( t, t

0
) = e<,-r.),I, and we proved in §2.4 that this is the unique 

solution. However, this formula no longer works for the time-dependent case, and 

more imponantly, the •obvious• generaliz.ation 

~(t, t0 ) = cxp(f A(s)ds) (incorrect!) (2.48) 

is usually wrong since the matrixA(s1) does not generally commute withA(s2) when 
s
1 
,I s

2 
(sec Exercises 18-19). Moreover, as the following example shows, the eigen­

values of the matrix A(t) at a fixed value of time may have nothing to do with the 

properties of the solution of (2.45). 

Example 2.32. Herc is an example that points out the pitfalls of looking at the eigen­

values of A( t) (Markus and Yamabe 1960). Consider the time-dependent matrix 

A ( -1 +acos
2 

t 
(t)= -1-acostsint 

1-acostsint ) 
-1+asin2 t • 

It is easy to see that the eigenvalues of this matrix are independent of time because 

tr(A) = a-2, and dct(A)= 2-a, so 

A=¾(a-2±~. 
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• • • h h' be stable However, the dif-When a< 2, the eigenvalues indicate t att IS system may • .
1 

i1i d 
ferential equation .i: = A(t )x has two simple explicit solutioru, as can be east Y ver e 
by substitution: 

x1(t) = ( co~t ) e(a-1)1' 
-Slllt 

( ) _ ( sin t ) _, Xi t - e • cost 
(2.49) 

Therefore, when a > 1 the first solution is unbounded and thus the system is unsta­
ble. Consequently, for the range 1 < a < 2 the system is unstable, even though the 
eigenvalues of A(t) would suggest that it should be stable. This example shows that 
the eigenvalues of a nonautonomous matrix do not generally determine the stability 
of the corresponding ODE. I 

For the case that A is a periodic matrix, an important quantity is the value of the 
fundamental matrix at one period; it is called the 

I> morwdromy matrix, M = l}(T,O). 

Given the initial condition x(O) = x0, then x(T) = M x0• To continue this solution 
past T requires finding the solution of the initial value problem 

x =A(t)x, x(T) =Mx0 • 

Define a new time variable -r = t - T, and use A( -r + T) = A(-r) to see that this is the 
same as the initial value problem (2.45), with x0 replaced by M x0, so its solution is 
~(-r,O)Mx0• This implies 

In consequence, to get the long-time behavior of any solution, we merely need to com­
pute Mn. 

The eigenvalues of M are called the Floquet multipliers. Suppose x
0 

is an eigenvector 
of M with eigenvalue µ; then 

x(nT) = µnx
0 
= enlnµ x

0
• 

The exponent 1n µ is called a F/cquet exponent; it is a special case of the Lyapunov 
exponent that we will meet in Chapter 7. 

Example 2.33. Continuing the previous example, note that the matrix A( t) is peri­
odic with period T = n. Moreover, the two solutions (2.49) are linearly independent, 
and since x1(0) = (t,0)7 and .xi(O) = {O, 1)7, the fundamental solution is l}(t,O) = 
[x1(t),xit)]. Evaluating this at t = n gives the monodromy matrix 

(
-en(a-1) 0 ) 

Af=\}(n,0)= 0 -e-n: , 

showing that the Floquet multipliers are µ 1 =-en(a-l) and µ2 =-e-". Note that when 
a > 1, there is one Floquet multiplier with magnitude larger than one and one with 
magnitude smaller than one. I 

In general, the monodromy matrix M is nonsingular. In fact, there is a simple 
equation for the evolution of the determinant of~ that holds even when A( t) is not 
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periodic. This theorem gcncralizts the standard result by Abel for the "Wronskian" 

of a secon<H>rder ODE. 

Theorem 2.34 (Abel), 1bt ~mniMllt of the fondammtal matrix is 

det(t(t,t,))=expJ,
1 

tr{A(s))ds. 
t, 

(2.50) 

Nott d,,,i tr{A(s)) is11 mr, so thtexponmti,J is the ordin4ry, SC4larexponmti4L 

Proof. Our goal is to obtain a simple ODE for dcc(t). The derivative of the determi­

nant oft can be computed using the cofactor formula. Recall that the cofactor, c,j, is 

(-1)i+i times the determinant of the (n-1) x (n-1) matrix obtained by omitting the 

ith row and the jth column from t. Multiplying C;; by t;; and summing over j, i.e., 

summing along the ith row, gives 

det{t)= i:,c;;t;;• 
j=I 

This formula imue for any choice of row i. If instead we multiply C;; bytk;• and then 

sum over j, then this is equivalent to computing the determinant of the matrix with 

the ith row replaced by the kth row. Since the resulting matrix has two equal rows, 

its determinant is zero. This generalization of the cofactor formula can be written as 

• 
dcc(t) 8il, = L',;tki• (2.51) 

j=I 

where 8;; is the Kronnecker delta (2.42). Equivalently, (2.51) can be written in matrix 

noution as det(t)/ = Ct 7. Finally, note that the only term in det(t) that contains a 

specific element t;; is the term ciit;;, so that 

a 
~dcc(t)=c;;• 
ot;; 

(2.52) 

Using (2.-46), (2.51), (2.52), and the chain rule, the time derivative of the fundamental 

matrix is 

Simplifying yields 

d
d det(t(t))=(i: 8;ia;1(1))dct(t(t))=tr(A(t)) det(t(t)). 
t i,k:I 

This scalar differential equation for the determinant oft can be easily integrated to 

time t to obtain the promised (2.50). □ 
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Since det(~(T,O)) = det(M), Mis nonsingular. Consequently, all t~e Floquet m~l­
tipliers are nonzero and the Floquet exponents are we!( ~dined. ~be! s theore~ w~ll 
be used in §4.11 and in §7.2 to aid the study of the stab1l1ty of periodic and aperiodic 
orbits. 

In addition to the Floquet exponents, lnµi, it is also convenient to define the loga-
rithm of the Floquet matrix, In M, itself. Hov:evcr, it is not obvious that t~e lo~arithm 
of a genen.l matrix is always well defined, as IS the case for the exponential. Smee the 
Maclaurin series defined cxp{M), it would be reasonable to use a similar series for the 
logarithm, 

00 xi 
ln(l-x)=-L---:-; 

J=I I 
(2.53) 

however, this converges only for lxl < 1. Since lnM = ln(/ -(/-M)), we assume the 
series definition can be used only for 111-MII < 1. How can we define lnM in general? 

Lemma 2.35. Any nonsingular matrix A has a (possibly complex) logarithm 

lnA=Pln(A)P-1 - ~c-s-_'N)i' 
i=I I 

wh~ A = S + N, S = P AP-1 is semisimplt, N is nilpotmt, A is the diagonal matrix of 
eigemJa/ues, and P is the matrix of generalized eigenv«tors of A. 

Proof. The semisimple-nilpotcnt decomposition, Theorem 2.23, gives A = S + N, 
where S is semisimple, N is nilpotent, and [ S, N] = 0. Since A is assumed nonsingular, 
S is also nonsingular since its ei~envalues are the same as those of A. 

Consider first the case of a semisimple, nonsingular matrix S. By definition there 
exists a diagonalizing transformation P such that P-1 SP = A, where A is diagonal 
and has all entries nonzero but is possibly complex. Defining lnA = diag(lnAii ), then 
elnA=A, and 

S = PelnAp-t = cxp(P lnAr1), (2.54) 

so that _In S = P In AP-1
• Hence In S exists for any nonsingular, semisimple S. 

Now suppose that N is any nilpotent matrix. We claim that In(/+ N) exists. In­
deed, using the series (2.53) formally (ignoring convergence}, define a matrix B by 

00 (-N)i n-1 (-N)i 
B=-2:-=-L-

i=I j j=I j • 
(2.55) 

This is more than a formal definition, however, because, when N is nilpotent, only 
finitely mariy terms in this series arc nonzero; consequently, (2.55) converges for any 
N_· Moreover we claim that e8 = I +N. Formal manipulation of the power series 
gives 

00 

1 ( 
00 

( N)i)k e
8 =L, -2:~ =l+N 

k=O k. i=I I 

because this is true for scalar values, and [Ni ,Nk] =0 for any integers j and k. More­
over these series converge because the exponential series converges for any bounded 
linear operator, and the inner series has only finitely many nonzero terms. In conclu­
sion, B = In(/ +N) is given by (2.55) for any nilpotent N. 

L 
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periodic. This thtorcm generalizes the standard result by Abel for the "Wronskian• 

of a second-order ODE. 

Theorem 2.34 (Abel). 7ht detmninant of tht fondammt4l matrix is 

det(t(r,t0))=cxpf I u(A(s))ds. (2.50) 

'• 
Nolt that tr(A(s)) is" sc,J,,r, so thtexponmti4/ is the ordinary, sc,J,,rexponenti,zl. 

Proof. Our goal is to obtain a simple ODE for det{t). The derivative of the determi­

nant oft can be computed using the cofactor formula. Recall that the cofactor, C;;, is 

(-1f+i times the determinant of the(n-1) x(n-l)matrixobtained by omitting the 

ith row and the jth column from t. Multiplying c;; byt;, and summing over j, i.e., 

summing along the ith row, gives 

• 
det{t)= L';;t;;-

i=• 

This formula istrue for any choice of row i. If instead we multiply c;; byt-"i' and then 

sum over j, then this is equivalent to computing the determinant of the matrix with 

the ith row replaced by the kth row. Since: the resulting matrix has two equ:11 rows, 

iu determinant is zero. This generaliution of the cofactor formula can be wntten as 

• 
det{t) 8;• = L';;t•;• 

i=I 

(2.51) 

where 8;; is the K.ronnecker delta (2.42). Equivalently, (2.51) can be written in m~tr.ix 

notation as det{t)/ = ctr. Finally, note that the only term in det(t) that contains a 

specific dement t;; is the term C;;t;;, so that 

(2.52) 

Using (2.46), (2.51), (2.52), and the chain rule, the time derivative of the fundamental 

matrix is 

Simplifying yields 

~ det{t(t)) = (t 8;k"i•(t) )dec(t(r)) = tr{A(t)) det(t(t )). 

This scalar differential equation for the determinant of t can be easily integrated to 
time t to obtain the promised (2.50). □ 
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ucntl all the Floquct mu!­. ~ince dct(~(T,O)) = dct(M), Mis nonsingular. CorJ n l' Abel's theorem will 
ttplicrs arc nonzero and the Floquet exponents arc we .. c n: 'od' d aperiodic be used in §4.11 and in §7.2 to aid the study of the stability O pen ,can 
orbits. . . d nnc the loga-In addition to the Floquet exponents, In µ

1
, it 1s also convenient to ch I 'thm . • • b • that t c ogan mhm of the Floquet matrix, lnM, itself. However, 1t ,snot O v,ous . al s· ce the 

of a general matrix is always well defined, as is the case for the cxP_On.~• •. i the Maclaurin series defined exp(M), it would be reason2blc to use a s1m1 series or 
logarithm, 

oo xi 
ln(l-x)=-~-:-; ,=• I 

(2.53) 

however, this converges only for lxl < I. Since lnM = ln(l -(1-M}), we ~me the 
series definition can be used only for III -MIi < 1. How can we define lnM in general? 

Lemma 2.35. Any nonsingular 1714fTix A bas a (possibly compkx) logarithm 

lnA:Pln(A)P-1-f (-S-.'NY, 
i=I I 

where A= S +N, S =PAP-1 issemisimplt, N is nilpotmt, A is tbtdiagonal matrix of 
tigtm,a/ues, and P is tht matrix of gentralized tigenvtetors of A. 

Proof. The semisimple-nilpotcnt decomposition, Theorem 2.23, gives A = S + N, 
where S is semisimplc, N is nilpotent, and [ S,N] = 0. Since A is assumed nonsingular, 
S is also nonsingular since its ci~cnvalues arc the same as those of A. 

Consider first the case of a semisimplc, nonsingular matrix S. By definition there 
exists a diagonalizing transformation P such that P-1 SP = A, where A is diagonal 
and has all entries nonzero but is possibly complex. Defining lnA = diag(lnA;;), then tlnA=A, and 

S=PtlnAp-'=exp(PlnAP-1), (2.54) 
so that _lnS = P InAP-1• Hence lnS exists for any nonsingular, semisimple S. 

Now suppose that N is any nilpotent matrix. We claim that In(/+ N) exists. In­
deed, using the series (2.53) formally (ignoring convergence), define a matrix B by 

00 (-NY •-1 (-N)i 
B=-'2::-. =-'2::-.. 

i=I I J=I I 
(2.55) 

This is more than a formal definition, however, because, when N is nilpotent, only 
finitely many terms in this series arc nonzero; consequently, (2.55) converges for any 
N. Moreover we claim that e' = I +N. Formal manipulation of the power series 
gives 

e8 = i: ~ (-i: (-~)• =l +N 
•:0 k. i=I I 

because this is true for scalar values, and [Ni ,N•] == 0 for any integers j and k. More­
over these series converge because the exponential series converges for any bounded 
linear operator, and the inner series has only finitely many nonzero terms. In conclu­
sion, B == ln(l + N) is given by (2.55) for any nilpotent N. 
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Finally, consider the general rue: 

A=S+N=S(l +S-1N). 

Note that since N is nilpotent and [S,N] = 0, then S-1 N is also nilpotent: if N" = 0, 

then (S-'Nt = S-"N" = 0. Therefore, both terms, Sand(/ +S-1N), have loga­
rithms. By analogy with the property ln(a b) = Ina+ In b, we claim that lnA is given 
by 

B =lns+ln(I +S-1N), 

where the first term is given by (2.54)and the second by (2.55) with N-+ S-1N. Note 
that (SJ +S-1N] = 0, and so by their definitions, (lnS,ln(/ +S-1N)] = o as well. 
This unplies that 

ea= tlnS+ln(l-+S"
1
N) = tl•Seln(l+S-'N) = S(l +S-'N) =A, 

as claimed. a 

Although lnA exists, it is not unique. Indeed, just as for a scalar, where the expo­
nential of ln(a)+2mri is independent of n E Z, the eigenvalues of lnA are unique only 
up to addition of 2nni (see Exercise 13d). 

The delinition of lnM can be used to obtain a nice form for the solutions to a 
periodic linear system. 

Theorem 2.36 (Floquet 1883). Ltt M bt tht monodromy matrix for a T-perwdic linear 
sysum x = A( t )x ana TB = lnM ils logarithm. 1ben thm txists a T -periodic matrix ~ 
SNCh that tht fandammul matrix sol11tion is 

4>(t,0)=9(t)t'8. (2.56) 

Proof. Let 'V(t) =t(t + T,0). SinceA(t) is periodic, then f,w =A(t + T)ill =A(t )Ill, 
with iIJ(0) = M. Now ~ince t is the fundamental matrix solution, every solution x( t) 
is of the form t(t,0)x(0); accordingly 'll(t)= l(t,0)M, and 

t(t + T,0) = l(t,0)M = t(t,O)er8 • 

Since e'8 is nonsingular, define 9(t):f(t,0)e-•8 so that 

9(t + T) = l(t + T,O)e-<•+T)B = t(t,O)er8 e-{t+T)B = 9(t ). 

Therefore, 9 is T-periodic. D 

As usual, it is not always satisfactory to write the solution of a real linear system 
in terms of complex functions. However, at the expense of doubling the period, a real 
form can be found, as follows. 

Theorem 2.37. Ltt t bt the furulammtal matrix solution for tht time T-periodic linear 
system (2.45). 1ben Ihm exist a real 2T-periodic matrix f2 and real matrix R such that 

t{t,0) = i2(t)e'R. 

Proof. In Exercise 21, you will show that for any nonsingular matrix M, there exists a 
real macrixR such thatM2 = e2TR_ Define i2(t)=t(t,0)e-•R, and then 

fl(t +2T)=t(t +2T,o)e-irRe-1R =l(t,0)M2M-2e-1R = J!2(t). 
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Therefore, S!J is 27-pcriodic. 0 
. when M has negative rw multipliers In fact, one need only extend thepcnod ~o 27 

8 •ca11 arise near a "period-(see Exercise 21). These, aswe will see later m Chapter 'typi y 
doubling bifurcation." 

2.9 ■ Exercises 
d h f I f cc to use a computer to check You should do these problems by ban ; owever, cc r 

your answers if that is possible. 
1. Near an equilibrium an ODE can be simplified by ~pan<l:i~g ~he equations to first order in the deviations of the variables from their equ,libnum values. The resulting system is linear. Formally for x = /(x), set x = x,q + Sx, and use 

f(x,q) = 0 to find 

. 8/ Sx = f(x,q + Sx)~ f(x,q)+ Bx (x,q)Sx+• .. ~A8x. 

Here you must remember that x is a vector, and so the matrix A has clements 
a;;::: 8 f./Bx;· Carry out this expansion for the equilibria you found in Exer­cise 1.2 and compute the 4 x 4 matrix A for each case. 

2. Find the general solution to the two-dimensional linear system for the Hamilto­nian (1.29) and show that the phase ponrait given in Figure 1.8 is correct. 
3. Show that if Tis a bounded linear operator and is invenible, then 

4. Suppose T is a bounded linear operator on X that leaves a complete, vector subspace E C X invariant (i.e., whenever 'II EE then T(v) EE). Show that e1 also leaves E invariant. (For the definition of complete, normed space, see Sec. 3.2.) 

5. In this problem we will prove the following lemma. 

Lemim. 2.38. A linear operator T is bounikd if and only if it is continuous. 

(a) Recall that continuity means that if x. -+ x, then T(x.)-+ T(x). First show that linearity implies that if T is continuous at x = 0, then it is con­tinuous everywhere. (Hint: Consider a sequence x. -+ 0 and then use superposition to find the limit of T(x. +y).) 
(b) Suppose Tis bounded; then show that x.-+ 0 implies that IT(x.)1-+ 0. Argue that this implies T is continuous. 
(c) Suppose T is not bounded; then show that it is not continuous at x = 0. (Hint: Argue that there is sequence x. such that IT(x.)I > n lx. l. Now let Yn = x./n Ix.I). Argue that you have proved that if Tis continuous, it is 

bounded. 
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