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Theorem 2.20 implies that E¢ is the complement of E*, since the generalized eigenvec-
tors span R’. To demonstrate this, find generalized eigenvectors by solving
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(A-orYv=( 4 4 4 |[ b |=0
-2 =2 2 /\¢

This is equivalent to the single equation 4+ b + ¢ = 0, so that there are two arbitrary
constants in v (we knew this already since dim(E¢) = 2). One representation of the
solution is v =4, + bv,, where v, =(1,0,—1)" and v, = (0,1,~1)7. Consequently,

: a
E¢ = span(v,,v;) = b ):a,beR}.
—a—b

Finally we ask, is the system linearly stable? For this to be the case, the nilpotent
part of A must vanish, or alternatively there must be two independent eigenvectors
corresponding to A = 0. The eigenvalue problem (4—0I)v = 0 has only a single
solution, v = (1,0,—1)T, Since the nilpotent part is nonzero our system is not linearly

stable. This is confirmed by finding
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giving a nilpotent part
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which is easily seen to satisfy N? = 0. Finally, the exponential is
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confirming that this system is unstable since there are terms that grow linearly in time.
In particular, if x, = (1,0,0)7, then x(t) — 2¢(—1,0,1)T — co. Note that not all
solutions are unbounded. For example, if z, = (0,1,0)7, then x(¢) = (—1,0,1)T.
Nevertheless, a single unbounded solution is enough to declare the system unstable.

2.8 = Nonautonomous Linear Systems and Floquet Theory

A linear physical system that is externally forced can often be modeled by the affine
set of ODEs,

L =Ax+f(t).
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Such differential equations can be easily solved using the “integrating factor” method;
see Exercise 17. It is considerably more difficult to solve a linear system when the

matrix A depends upon time,
X =A(t)x, x(t,)=x,. (2.45)
Nonautonomous equations like these can arise in mechanical systems if the forcing
changes the effective spring constants; for example, a person pumping his legs on a
swing will change the effective length of the pendulum and thereby modulate the co-
efficient g/ that governs the linear oscillation frequency. Equations of the form (2.45)
als‘o occur as the [‘mearization of the dynamics about a periodic orbit of period 7. In
this case the matrix A is a periodic function of time, A(¢ +7) = A(¢). Gaston Floquet
developed the theory of the solutions of such systems in the 1880s (Chicone 1999, §2.4;
Floquet 1883; Yakubovitch and Starzhinskii 1975, Chapter 5).
To solve (2.45), it is convenient to consider a matrix differential equation of the
form (2.33), replacing the vector x(¢) by a matrix. The general solution is most con-
veniently represented in terms of the principal fundamental matrix solution, which is

the solution ®(t, t,) of the matrix initial value problem

d

EI—Q =A()®, (¢,,2,)=1. (2.46)

Here we have added a second argument to & to indicate that the initial condition is

applied at time ¢,. As for the autonomous cgse, the solution of the original system
) = &(¢, t,)x,. Thus, if we can find

with initial value x(¢,) = x, is simply given by x(z

&(t,t,), we also have the general solution to (2.45). We will ignore for the moment
the more delicate question of the existence and uniqueness of &; this will follow more
generally from Theorem 3.24, requiring only that A(t) be a continuous function of

time. Uniqueness implies that the fundamental matrix solution obeys the relation

o(t,r)=B(2,5)2(s,7) (2.47)

forall¢,s,r €R. _
When A is constant $(z, z,) = e* =, and we proved in §2.4 that this is the unique
the time-dependent case, and

solution. However, this formula no longer works for
more importantly, the “obvious” generalization

d-"(r,to)=cxp(f‘A(s)ds) (incorrect!)

(2.48)

oes not generally commute with A(s,) when

as the following example shows, the eigen-

is usually wrong since the matrix A(s;) d
hing to do with the

s; # 5, (see Exercises 18-19). Moreover,
values of the matrix A(t) at a fixed value of time may have not

properties of the solution of (2.45).

Example 2.32. Here is an example
values of A(¢) Markus and Yamabe 1960). Consider the time-d

A(r)—( —1+4acos®t l—czoosrsint)
=\ —1—ccostsint . —1+asin’t /°

It is easy to see that the eigenvalues of this matrix are independent of time because
tr{(A) = a—2, and det(A) =2—a, so

A=3(a—2£Va?—4).

that points out the pitfalls of looking at the eigen-
ependent matrix
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When a < 2, the eigenvalues indicate that this system may be stable. Howetl’lcr"::: g ﬁ;
ferential equation % = A(t)x has two simple explicit solutions, as can be easily verine
by substitution:

xl(t)=( g )e("'”', xz(t)=( sin )e". (2.49)

—sint cost

Therefore, when a > 1 the first solution is unbounded and thus the system is unsta-
ble. Consequently, for the range 1 < @ < 2 the system is unstable, even though the
eigenvalues of A(t) would suggest that it should be stable. This example shows that

the eigenvalues of a nonautonomous matrix do not generally determine the stability
of the corresponding ODE. N

For the case that A is a periodic matrix, an important quantity is the value of the
fundamental matrix at one period; it is called the

> monodromy matrix, M = &(T,0).

Given the initial condition x(0) = x,, then x(T') = Mx,. To continue this solution
past T requires finding the solution of the initial value problem

x=A(t)x, x(T)=Mx,.

Define a new time variable v = ¢t — T, and use A(7 + T') = A(7) to see that this is the
same as the initial value problem (2.45), with x, replaced by Mx,, so its solution is
®(7,0)Mx,. This implies

x(2T)=M?x,.
In consequence, to get the long-time behavior of any solution, we merely need to com-
pute M",

The eigenvalues of M are called the Floguet multipliers. Suppose x, is an eigenvector
of M with eigenvalue y; then

x(nT)=p"x, =e""Fx .

The exponent Iny is called a Floguet exponent; it is a special case of the Lyapunov
exponent that we will meet in Chapter 7.

Example 2.33. Continuing the previous example, note that the matrix A(z) is peri-
odic with period T' = 7. Moreover, the two solutions (2.49) are linearly independent,
and since x,(0) = (1,0)" and ,(0) = (0,1)7, the fundamental solution is &(t,0) =
[x,(£), x,(2)]. Evaluating this at ¢ = 7 gives the monodromy matrix

—pma—1)
M=8(m,0)=( ~* ol

0 —e

showing that the Floquet multipliers are p1; =€™%= and y, =-e~". Note that when

@ > 1, there is one Floquet multiplier with magnitude larger than one and one with
magnitude smaller than one, W

In general, the monodromy matrix M is nonsingular. In fact, there is a simple
equation for the evolution of the determinant of & that holds even when A(¢) is not
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periodic. This theorem generalizes the standard result by Abel for the “Wronskian”
of a second-order ODE.

Theorem 2.34 (Abel). The determinant of the fundamental matrix. is
det(®(t,¢,)) =exp f ‘tr(A(s))ds. (2.50)

Note that tr{A(s)) is a scalar, so the exponential is the ordinary, scalar exponential.

Proof. Our goal is to obtain a simple ODE for det(®). The derivative of the determi-
nant of ® can be computed using the cofactor formula. Recall that the cofactor, ¢ij» is

(—1)"*/ times the determinant of the (n— 1) x (n—1) matrix obtained by omitting the
ith row and the jth column from ®. Multiplying c;; by #;; and summing over Jsien
summing along the ith row, gives
det(@) = Zcij¢ij'
J=1
This formula is true for any choice of row . If instead we multiply ¢;; by ;s and then
sum over J, then this is equivalent to computing the determinant of the matrix with

the ith row replaced by the kth row. Since the resulting matrix has two equal rows,
its determinant is zero. This generalization of the cofactor formula can be written as

det(®) 8, =D .6,y 2.51)
=
where J;; isthe K ronnecker delta (2.42). Equivalently, (2.51) can be written in matrix
notation as det(®)/ = C$”. Finally, note that the only term in det(®) that contains a
specific element & is the term ¢;; ®;;, so0 that

——5’— det(®) =c;;. (2.52)

7%,
Using (2.46), (2.51), (2.52), and the chain rule, the time derivative of the fundamental

matrix is
n

2 g oe)= 32,05 8(0= 2 csOultBy )

iy=1 irjk=1

= i a;(t) (if;j(‘)q’k;(f)) = i a;, ()0, det (2(2)).

ik=1 j=1 ik=1
Simplifying yields
d%dec (@) = (,,;,iﬂ Sﬁa,-,,(:)) det(®(2)) = te(A(t)) det (%(2)).

This scalar differential equation for the determinant of & can be easily integrated to
time ¢ to obtain the promised (2.50). a
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Since det(®(7,0)) = det(M), M is nonsingular. Consequently, all the Floquet mql-
tipliers are nonzero and the Floquet exponents are well defined. z}be!'s theorem will
be used in §4.11 and in §7.2 to aid the study of the stability of periodic and aperiodic
orbits.

In addition to the Floquet exponents, In 2, it is also convenient to define the loga-
rithm of the Floquet matrix, ln M, itself. However, it is not obvious that the logarithm
of a general matrix is always well defined, as is the case for the exponential. Since the

MacLaurin series defined exp(M), it would be reasonable to use a similar series for the
logarithm,

m(l—x)=—2’;—.’; (2.53)
j=1

however, this converges only for |x| < 1. Since InM = In(I —(I —M)), we assume the
series definition can be used only for ||/ — M|| < 1. How can we define In M in general?

Lemma 2.35. Any nonsingular matrix A has a (possibly complex) logarithm
n=1 ¢ c=1any
InA=Pla(A)P~' =" (_s_Ny_

=1

where A= S +N, S = PAP~" is semisimple, N is nilpotent, A is the diagonal matrix of
eigenvalues, and P is the matrix of genenalized eigenvectors of A.

Proof. The semisimple-nilpotent decomposition, Theorem 2.23, gives A = S + N,
where § is semisimple, N is nilpotent, and [§, N] = 0. Since A is assumed nonsingular,
§ is also nonsingular since its eigenvalues are the same as those of A.

_ Consider first the case of a semisimple, nonsingular matrix S. By definition there
exists a diagonalizing transformation P such that PSP = A, where A is diagonal
afld has all entries nonzero but is possibly complex. Defining In A = diag(In A;; ), then
e nA = A, an d

§=Pe*P~ = exp(PInAP™), (2.54)

so that In§ = Pln AP, Hence In S exists for any nonsingular, semisimple S.
Now suppose that N is any nilpotent matrix. We claim that In(J + N ) exists. In-
deed, using the series (2.53) formally (ignoring convergence), define a matrix B by

B=—iw—=—itﬂ. (2.55)
=10 =t

Th_is is more than a _form.al definition, however, because, when N is nilpotent, only
finitely many terms in this series are nonzero; consequently, (2.55) converges for any

N. Moreover we claim that e? = I+ N. Formal manipulation of the power series
gives

because this is true for scalar values, and [Nf ,N"] =0 for any integers j and k. More-
over these series converge because the exponential series converges for any bounded
linear operator, and the inner series has only finitely many nonzero terms. In conclu-
sion, B = In(I 4+ N) is given by (2.55) for any nilpotent N.
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periodic. This theorem generalizes the standard result by Abel for the “Wronskian”
of a second-order ODE.

Theorem 2.34 (Abel). The determinant of the fundamental matrix is
det(8(1,1,)) = exp f HA(S)ds. 2.50)
t‘

Note that tr(A(s)) is a scalar, so the exponential is the ordinary, scalar exponential.

Proof. Our goal is to obtain a simple ODE for det(®). The derivative of the determi-
nant of & can be computed using the cofactor formula. Recall that the cofactor, ¢ is

(—1)'*/ timesthe determinant of the (7 —1) X (# —1) matrix obtained by omitting the
ith row and the jth column from ®. Multiplying ¢;; by #;; and summing over J,ie.,
summing along the ith row, gives

det ()= ¢;;9;;-
=1
This formula is true for any choice of row i. If instead we multiply ¢;; by %4 and then

sum over J, then this is equivalent to computing the determinant of the matrix with
the ith row replaced by the kth row. Since the resulting matrix has two equal rows,
its determinant is zero. This generalization of the cofactor formula can be written as

dCt(@) a"k =ZC,!¢&,’,, (2'51)
=1

where &, is the Kronnecker delta (2.42). Equivalently, (2.51) can be written in matrix
notation as det(®)] = C&T. Finally, note that the only term in det(®) that contains a

specific element &;; is the term ¢;;®;;, s0 that

ad'; det(®) = . (2.52)

Using (2.46), (2.51), (2.52), and the chain rule, the time derivative of the fundamental

mMatrix is
n

2 g (@(0)= 3,1 80= 2. e )

iy=1 i, =1

= i a,-k(:)(iqj(:)@“(t)) = i a; ()0 det (2(¢))-
j=1

ik=1 ik=1
Simplifying yields
;—t det (®(t)) = ( i 8,-,,5,1.(:)) det(3(¢)) = tr(A(t)) det(®(z)).
ik=1

'I:hﬁ scalar differential equation for the determinant of ® can be easily integrated to
time ¢ to obtain the promised (2.50). 0
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uet mul-
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however, this converges only for |x| < 1. Since InM = In(I —(I — M)), we assume the
series definition can be used only for ||/ —M|| < 1. How can we define In M in general?

Lemma 2.35. Any nonsingular matrix A has a (possibly complex) logarithm
n—1 (_S—I N)}

InA=Pla(A)P~ > —,
j=1

where A= S+ N, S = PAP~" is semisimple, N is nilpotent, A is the diagonal matrix of
eigenvalues, and P is the matrix of generalized eigenvectors of A.

Proof. The semisimple-nilpotent decomposition, Theorem 2.23, gives A = S+ N,
where § is semisimple, N is nilpotent, and [S, N] =0. Since A is assumed nonsingular,
§ is also nonsingular since its eigenvalues are the same as those of A.

Consider first the case of a semisimple, nonsingular matrix S. By definition there
exists a diagonalizing transformation P such that P~'SP = A, where A is diagonal
aﬁi has all entries nonzero but is possibly complex. Defining In A = diag(InA;;), then
e =A, and

$=Pe P~ =exp(PInAP™), (2.54)
so that InS = Pln AP~!. Hence In § exists for any nonsingular, semisimple .

Now suppose that N is any nilpotent matrix. We claim that In(I 4 N) exists. In-
deed, using the series (2.53) formally (ignoring convergence), define a matrix B by

o (=NY S (=Ny
B=—) ~—— =_% * 7 2.55
2 =D 222

This is more than a formal definition, however, because, when N is nilpotent, only
finitely many terms in this series are nonzero; consequently, (2.55) converges for any
N. Moreover we claim that e® = I+ N. Formal manipulation of the power series

gives
N\ k
L[N
A NP PRNUSLL )|
e -Zk!( Db p ) =I+N

k=0 Jj=1
because this is true for scalar values, and [N/, N*] =0 for any integers j and k. More-
over these series converge because the exponential series converges for any bounded
linear operator, and the inner series has only finitely many nonzero terms. In conclu-
sion, B = In(I + N) is given by (2.55) for any nilpotent N.
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Finally, consider the general case:
A=S+N=5(1+S5"'N).

Note that since N is nilpotent and [$,N] =0, then $~'A is also nilpotent: if N’ £=0,

then (S'IN)“ = $~*N* = 0. Therefore, both terms, § and (I+$~'N), have loga-
rithms. By analogy with the property In(ab) = Ina +In b, we claim that InA is given
by

B=InS+In(/+S5'N),

where the first term is given by (2.54) and the second by (2.55) with N — S—'N. Note
that [S I +5~'N] =0, and so by their definitions, [1n§, In(Z + 5! N)] =0 as well.
This implies that

¢® = glnSHAUHSIN) _ S InI+SN) = g L 5~IN) = 4,
as claimed. 0

Although In4 exists, it is not unique. Indeed, just as for a scalar, where the expo-
nential of In(4)+2n7i is independent of 7 € Z, the eigenvalues of InA are unique only
up to addition of 2nni (see Exercise 13d).

The definition of InM can be used to obtain a nice form for the solutions to a
periodic linear system.

Theorem 2.36 (Floquet 1883). Let M be the monodromy matrix for a T-periodic linear
system % = A(t)x and T B = In M its logarithm. Then there exists a T -periodic matrix P
such that the fundamental matrix solution is

9(£,0)=2(t)e'”. (2.56)

Proof. Let W(t) = &(t + T, 0). Since A(t) is periodic, then %LIV =A(t+T)¥=A(1)Y,
with ¥(0)= M. Now since ® is the fundamental matrix solution, every solution x(t)
is of the form ®(¢,0)x(0); accordingly ¥(2) = ¥(z,0)M, and

&(t + T,0) = &(¢,0)M = &(¢,0)e®.
Since e'? is nonsingular, define () = $(¢,0)e*2 so that
P(t+T)=3(t +T,0e 7% = §(2,0)e 2T = 2(2).
Therefore, 2 is T-periodic. o

As usual, it is not always satisfactory to write the solution of a real linear system
in terms of complex functions. However, at the expense of doubling the period, a real
form can be found, as follows.

Theorem 2.37. Let ® be the fundamental matrix solution for the time T-periodic linear
system (2.45). Then there exist a real 2T periodic matrix 2 and real matrix R such that

(t,0) = 2(z)e' 2.

Proof. In Exercise 21, you will show that for any nonsingular matrix M, there exists a
real matrix R such that M2 = ¢*7®, Define 2(t)=$(¢,0)e~*%, and then

2(t+2T) = 8(¢ +27,0)e " Re 'R =9(2,0M* M2~ R = ().
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Therefore, 2 is 2T-periodic. 0

. ltipliers
In fact, one need only extend the period to2 7 when M has C:flga:;;lﬁ:lazu“pzilod-
(see Exercise 21). These, as we will see later in Chapter 8, typically
doubling bifurcation.”

2.9 .« Exercises

You should do these problems by hand; however, feel free to use a computer to check
your answers if that is possible.

1. Near an equilibrium an ODE can be simplified by expand'lr'lg ic equations to
first order in the deviations of the variables from their equilibrium values. The
resulting system is linear. Formally for % = f(), set x = x,, + 8, and use
f(x,y) =0to find

85 = f(xg +85) fx,))+ g_g(x,q)apr--. nABx.

Here you must remember that x is a vector, and so the matrix A has elements
a,;=0f, / dx;. Carry out this expansion for the equilibria you found in Exer-
cise 1.2 and compute the 4 x 4 matrix A for each case.

2, Find the general solution to the two-dimension

al linear system for the Hamilto-
nian (1.29) and show that the phase portrait gl

ven in Figure 1.8 is correct.

- Show that if T is a bounded linear operator and is invertible, then
1
>
> 7

4. Suppose T is a bounded linear operator on X that leaves a complere, vector
subspace E C X invariant (

- _ ., Whenever v € E then T(v) € E). Show that
Se also ;eaves £ invariant. (For the definition of complete, normed space, see
ec. 3.2.

- In this problem we will prove the following lemma,

Lemma 2.38. A linear operator T is bounded if and only if it is continuous.

(&) Recall that continuity means that if X, = x, then T(x,) — T(x). First
show that linearity implies that if T is continuous at x =0, then it is con-

tinuous everywhere. (Hint: Consider a sequence x, — 0 and then use
superposition to find the limit of T(x, +y),)

(b) Suppose T is bounded; then show that x, — 0 implies that |T(x,)| — O.
Argue that this implies T is continuous.

(c) Suppose T is not bounded; then show that it is not continuous at x = 0.
(Hint: Argue that there is sequence x, such that |T(x, )| > 1 |x, |. Now let

In = X,/n|%,]). Argue that you have proved that if T is continuous, it is
bounded.
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