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Figure J.6. E.xistmtt of so/11tions for initiJ conditions in a neighborhood of radius b 

"'1o.tx, rrq,,im 11SU1g • mwlltr IMJ/. 

Note that the initial conditions can be varied only over a ball with half the radius 

of the ball where/ is assumed to be nice and that the solution can be shown to ex­

ist only for half of the time. This is because all the solutions must stay in Bb for all 

ltl < a; sec Figure 3.6. We could adjust these factors of¼, increasing one at the ex­

pense of decreasing the other. Finally, as before, the requirement that a< 1/ K could 

be eliminated with a little more work. 

Example 3.27. Consider the initial value problem (3.23) taking as the central point 

.x0 = 0 so that/: B1,(0)-+ R. The Lipschitz constant on this domain is K = 2b ~d 

1/1 is bounded by M = b2• The theorem then guarantees that a unique solution exists 

for !YI< b/2, providing a< min{(2bt1,b/(2b2)} = (2bt1. Note that the actual 

solution (3.25) for an initial condiuon ye B1,1i(D) blows up a time t = 1/y, s~ the 

shortest time occurs when y = b /2. Thus the true solution exists at least four tunes 

longer than the theorem gives us. I 

So f2r we have seen that the solution u(t;y) exists for a range of initial conditions 

and is C1 in t whenever the vector field/ is Lipschitz. Our goal now is to discuss the 

smoothness of the dependence of u(t;y)ony. For example, we will see that when the 

vector .field is Lipschitz, u is a Lipschitz function of y. 

The main tool used to prove this is a lemma about differential inequalities. Some 

~e must be exercised here. For example, suppose that/ < g; does it follow that 

f < g? A simple counterexample shows this is not true: /(t) = cos3t and g(t) = 2. 

The converse. statement is also not true: for example, if/ ( t) = sin t and g ( t) = 2 t, 

then indeed/(t) =cost< g(t) = 2, but note that/> g when t < 0. In contrast, 

note that if/ ~ g, it follows that/ increases less rapidly than g, so that/ ( t )-f ( t ) ~ 

g(t)- g(t0) fJ1'0'Vi<kd t ~ t0 • It is important, of course, that we assume that both 

/, g E c• for this to work. This simple idea leads to the lemma proved by Thomas 

Gronwall in 1919. 

Lemma 3.28 (Gronwall). Suppose g,k: [D,a]-+ 'JR are continuous, a > o, k(t) > o, 
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• 

and. g obeys the inequality 

g(t)~G{t):c+ f k(s)g(s)ds 

for all O:::; t ~ a. Then for all t E [O,a ), 

g( t):::; cef; lt(s)ds. 

(3.31) 

(3.32) 

Proof. Since g and k are continuous, then G is C1 and G(O) = c. Differentiation of G 
from (3.31) gives 

G(t) = k(t )g(t) ~ k(t )G(t ); 

c?nsequently, G-kG ~ O. Multiplying by the positive "integrating factor" e-I; li(s)ds 
gives 

e-f;.1t(s)ds(G(t)-kG)= :t (G(t)e-f;lt(s)ds):::;o. 

Integrating this inequality finally implies 

G( t )e-I; .li(s)ds :::; G(O) :::} G( t):::; cef; .li(s)ds. 

Since g::;; G, we obtain (3.32). □ 

A similar lemma holds when c is allowed to be a function of time-see Exercise 11. 
Gronwall's inequality makes the proof of our desired theorem very easy. 

Theorem 3.29 (Lipschitz Dependence on Initial Conditions). Let x0 E IR", and 
suppose there is ab> 0 such that f: Bb(x0 )--t lR" is Lipschitz with constant Kand that J = [-a,a] is the common interval of existence for solutions u : J x Bb1i(x0} --t Bb(xO). 
Tben u(t;y) is uniformly Lipschitz in y with Lipschitz constant eK•. 

Proof. Suppose u(t;y) and u(t;z) are two solutions starting in Bb1i(x0
). They have a· 

common interval of existence]. When t E [O,a ], the integral form (3.11) implies that 

lu(t;y)-u(t;z)I::;; ly-zl + f lf(u(-r;y))-f(u(-r;z))ld-r 

~ ly-zl+K f lu(-r;y)-u(-r;z)ld-r. 

This is precisely Gronwall's form (3.31) with c = ly-zl, and k(t) = K, so (3.32) 
becomes 

lu(t;y)-u(t;z}I:::; ly-zl eK1
• 

A similar inequality holds for t E [-a, 0), giving our result. □ 

(3.33) 

A slightly different proof is sketched in Exercise 10. . 
We can use this Lipschitz dependence of u(t;y) on y to prove that when f is ct, 

then u is also ct in y. The proof of this result requires a bit more work than the 
previous one . 
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