



Figure 3.6. Existence of solutions for initial conditions in a neighborhood of radius b about x_0 requires using a smaller ball.

Note that the initial conditions can be varied only over a ball with *half* the radius of the ball where f is assumed to be nice and that the solution can be shown to exist only for *half* of the time. This is because all the solutions must stay in B_b for all $|t| < a$; see Figure 3.6. We could adjust these factors of $1/2$, increasing one at the expense of decreasing the other. Finally, as before, the requirement that $a < 1/K$ could be eliminated with a little more work.

Example 3.27. Consider the initial value problem (3.23) taking as the central point $x_0 = 0$ so that $f : B_b(0) \rightarrow \mathbb{R}$. The Lipschitz constant on this domain is $K = 2b$ and $|f|$ is bounded by $M = b^2$. The theorem then guarantees that a unique solution exists for $|y| < b/2$, providing $a < \min\{(2b)^{-1}, b/(2b^2)\} = (2b)^{-1}$. Note that the actual solution (3.25) for an initial condition $y \in B_{b/2}(0)$ blows up a time $t = 1/y$, so the shortest time occurs when $y = b/2$. Thus the true solution exists at least four times longer than the theorem gives us. ■

So far we have seen that the solution $u(t; y)$ exists for a range of initial conditions and is C^1 in t whenever the vector field f is Lipschitz. Our goal now is to discuss the smoothness of the dependence of $u(t; y)$ on y . For example, we will see that when the vector field is Lipschitz, u is a Lipschitz function of y .

The main tool used to prove this is a lemma about *differential inequalities*. Some care must be exercised here. For example, suppose that $f < g$; does it follow that $\dot{f} < \dot{g}$? A simple counterexample shows this is not true: $f(t) = \cos 3t$ and $g(t) = 2$. The converse statement is also not true: for example, if $f(t) = \sin t$ and $g(t) = 2t$, then indeed $\dot{f}(t) = \cos t < \dot{g}(t) = 2$, but note that $f > g$ when $t < 0$. In contrast, note that if $\dot{f} \leq \dot{g}$, it follows that f increases less rapidly than g , so that $f(t) - f(t_0) \leq g(t) - g(t_0)$ provided $t \geq t_0$. It is important, of course, that we assume that both $f, g \in C^1$ for this to work. This simple idea leads to the lemma proved by Thomas Grönwall in 1919.

Lemma 3.28 (Grönwall). Suppose $g, k : [0, a] \rightarrow \mathbb{R}$ are continuous, $a > 0$, $k(t) \geq 0$,

and g obeys the inequality

$$g(t) \leq G(t) \equiv c + \int_0^t k(s)g(s)ds \quad (3.31)$$

for all $0 \leq t \leq a$. Then for all $t \in [0, a]$,

$$g(t) \leq ce^{\int_0^t k(s)ds}. \quad (3.32)$$

Proof. Since g and k are continuous, then G is C^1 and $G(0) = c$. Differentiation of G from (3.31) gives

$$\dot{G}(t) = k(t)g(t) \leq k(t)G(t);$$

consequently, $\dot{G} - kG \leq 0$. Multiplying by the positive “integrating factor” $e^{-\int_0^t k(s)ds}$ gives

$$e^{-\int_0^t k(s)ds}(\dot{G}(t) - kG) = \frac{d}{dt}(G(t)e^{-\int_0^t k(s)ds}) \leq 0.$$

Integrating this inequality finally implies

$$G(t)e^{-\int_0^t k(s)ds} \leq G(0) \Rightarrow G(t) \leq ce^{\int_0^t k(s)ds}.$$

Since $g \leq G$, we obtain (3.32). \square

A similar lemma holds when c is allowed to be a function of time—see Exercise 11. Grönwall’s inequality makes the proof of our desired theorem very easy.

Theorem 3.29 (Lipschitz Dependence on Initial Conditions). *Let $x_0 \in \mathbb{R}^n$, and suppose there is a $b > 0$ such that $f : B_b(x_0) \rightarrow \mathbb{R}^n$ is Lipschitz with constant K and that $J = [-a, a]$ is the common interval of existence for solutions $u : J \times B_{b/2}(x_0) \rightarrow B_b(x_0)$. Then $u(t; y)$ is uniformly Lipschitz in y with Lipschitz constant e^{Ka} .*

Proof. Suppose $u(t; y)$ and $u(t; z)$ are two solutions starting in $B_{b/2}(x_0)$. They have a common interval of existence J . When $t \in [0, a]$, the integral form (3.11) implies that

$$\begin{aligned} |u(t; y) - u(t; z)| &\leq |y - z| + \int_0^t |f(u(\tau; y)) - f(u(\tau; z))| d\tau \\ &\leq |y - z| + K \int_0^t |u(\tau; y) - u(\tau; z)| d\tau. \end{aligned}$$

This is precisely Grönwall’s form (3.31) with $c = |y - z|$, and $k(t) = K$, so (3.32) becomes

$$|u(t; y) - u(t; z)| \leq |y - z| e^{Kt}. \quad (3.33)$$

A similar inequality holds for $t \in [-a, 0]$, giving our result. \square

A slightly different proof is sketched in Exercise 10.

We can use this Lipschitz dependence of $u(t; y)$ on y to prove that when f is C^1 , then u is also C^1 in y . The proof of this result requires a bit more work than the previous one.