

In these homework assignment, we will study properties of the Lorenz equations:

$$\begin{aligned}\dot{x} &= \sigma(y - x), \\ \dot{y} &= rx - y - xz, \\ \dot{z} &= xy - bz,\end{aligned}$$

where $\sigma, r, b > 0$.

Problem 1. For the Lorenz equations, show that the characteristic polynomial for the Jacobian matrix at C^+, C^- is

$$p(\lambda) = \lambda^3 + (\sigma + b + 1)\lambda^2 + (r + \sigma)b\lambda + 2b\sigma(r - 1).$$

By seeking roots of $p(\lambda)$ of the form $\lambda = i\omega$, where ω is real, show that there is a pair of pure imaginary eigenvalues at the Hopf bifurcation point:

$$r = r_H = \sigma \left(\frac{\sigma + b + 3}{\sigma - b - 1} \right).$$

Problem 2. Show that there is an ellipsoidal region E of the form

$$rx^2 + \sigma y^2 + \sigma(z - 2r)^2 \leq C$$

such that all trajectories of the Lorenz equations eventually enter E and stay in there forever.

Problem 3. Show that the z -axis is an invariant line for the Lorenz equations.

Problem 4. Consider the following system in polar coordinates

$$\begin{aligned}\dot{r} &= r(1 - r^2), \\ \dot{\theta} &= 1.\end{aligned}$$

Let D be the closed unit disk $x^2 + y^2 \leq 1$.

- (a) Is D an invariant set? Explain your answer.
- (b) Does D attract an open set of initial conditions? Explain your answer.
- (c) Is D an attractor? If not why not? If so, find its basin of attraction.
- (d) Repeat part (c) for the unit circle $x^2 + y^2 = 1$.

Problem 5. Consider the map

$$x_{n+1} = \begin{cases} 2x_n, & 0 \leq x_n \leq \frac{1}{2}, \\ 2 - 2x_n, & \frac{1}{2} \leq x_n \leq 1, \end{cases}$$

as a simple analytical model of the Lorenz map.

- (a) Why is it called the “tent map”?
- (b) Find all the fixed points and classify their stability.
- (c) Show that the map has a period-2 orbit. Is it stable or unstable?
- (d) Can you find any period-3 orbits? How about period 4? If so, are the corresponding orbits stable or unstable?