

Problem 1. Suppose you want to find the roots of an equation $g(x) = 0$ where $g(x)$ is a smooth function. In Calculus, you might have learned Newton's method which says that given an initial guess of x_0 , the iterations

$$x_{n+1} = f(x_n) = x_n - \frac{g(x_n)}{g'(x_n)}$$

form a sequence of approximations of a root.

1. Show that in most cases if x^* is a root of $g(x)$ then it is a fixed point of this iterated map. Under what conditions is this statement not true?
2. A fixed point of an iterated map $x_{n+1} = f(x_n)$ is called **superstable** if $f'(x^*) = 0$. Show that in almost all cases the roots of $g(x)$ are superstable fixed points of this iterated map.
3. Suppose x^* is a root of $g(x)$ and $f''(x^*) \neq 0$. Show that there is an interval $[a, b]$ containing x^* and a constant $M > 0$ such that if $x_0 \in [a, b]$ then $|f(x_0) - x^*| = |x_1 - x^*| < M|x_0 - x^*|^2$. **Hint:** Taylor's theorem with remainder could be useful.
4. Suppose x^* is a root of $g(x)$ and $f''(x^*) \neq 0$. Using part (c), show that there is an interval $[a, b]$ containing x^* and a constant $M > 0$ such that if $x_0 \in [a, b]$ then $|x_n - x^*| < (M|x_0 - x^*|)^{2^n}$.
5. Given the results in part (d), what conditions on M and x_0 guarantee that the iterations will converge to the root x^* .
6. If the conditions in part (e) are satisfied, and $|x_0 - x^*| < 10^{-1}$, how many iterations would you roughly have to compute in order for the error to satisfy $|x_n - x_0| < 10^{-16}$. **Note:** This rapid rate of convergence motivates why we call these fixed points superstable.

Problem 2. The decimal shift map on the unit interval $[0, 1]$ is given by

$$x_{n+1} = 10x_n \bmod 1.$$

- (a) Find all the fixed points for this system.
- (b) Show that the map has periodic orbits of all periods, but that all of them are unstable. For the first part, it is sufficient to explain how you would construct a period p orbit, for each integer $p > 1$.
- (c) Show that this map has infinitely many distinct orbits that are not periodic or fixed points.
- (d) Show that the system exhibits sensitive dependence on initial conditions.
- (e) Explicitly construct a dense orbit for this system. **Hint:** My statement in class of just pick any irrational number was wrong. First for $n \in \mathbb{N}$ consider how you would use a finite decimal expansion to construct an orbit that will be a distance less than 10^{-n} between every point in $[0, 1]$. Second, glue all of these finite decimal expansions together to create an infinite decimal expansion whose orbit will be dense.
- (f) An “eventually fixed point” of an iterated map is a point that iterates to a fixed point after a finite number of steps; thus $x_{n+1} = x_n$ for all $n > N$ where $N \in \mathbb{N}$. Is the number of eventually-fixed points for the decimal shift map countable or uncountable?

Problem 3. Analyze the long term behavior of the iterated map

$$x_{n+1} = r \frac{x_n}{1 + x_n^2},$$

where $r > 0$. Specifically, find and classify the stability of all fixed points as a function of r . Can there be periodic orbits for this iterated map? Can this iterated map be chaotic?

Problem 4. If n is an odd number, the “even- n fold odd Cantor set” is constructed as follows. First, construct S_1 by dividing $[0, 1]$ into n intervals of equal length and delete all the even pieces, i.e., the second, fourth, sixth, intervals etc. Second, construct S_2 by replicating the construction of S_1 on each subinterval of S_1 . Continue this process inductively to construct similar sets S_i for $i \in \mathbb{N}$. The even- n fold odd Cantor set is then $S = \bigcap_{i=1}^{\infty} S_i$. **Note:** The classic Cantor set introduced in class is the even-3 fold odd Cantor set.

- (a) Prove for all $n \in \mathbb{N}$ that S_{∞} is uncountable.
- (b) Prove for all $n \in \mathbb{N}$ that S_{∞} is a set of measure zero.
- (c) Find the box dimension of S_{∞} as a function of n .

Problem 5. Let $r > 2$ and consider the following tent map on $[0, 1] \cup \infty$ defined by $x_{n+1} = f(x_n)$, where

$$f(x) = \begin{cases} rx & 0 \leq x \leq \frac{1}{2} \\ r(1-x) & \frac{1}{2} < x \leq 1 \\ \infty & x = \infty \end{cases}$$

with the understanding that any point that is mapped outside the interval $[0, 1]$ is mapped to ∞ . For example, if $r = 4$ and $x_0 = \frac{1}{3}$ then $f(x_0) = \infty$. We say that an initial condition has escaped after k iterations if $x_k = \infty$ but $x_{k-1} \neq \infty$.

- (a) Find the set of initial conditions x_0 that escape after one or two iterations.
- (b) Describe the set of x_0 that never escape.
- (c) Find the box dimension of the set that never escape. **Note:** This set is an invariant set.
- (d) Show that the Lyapunov exponent is positive at each point in this invariant set.