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The Poincare-Bendixson 
Theorem 

The Poincare-Bendixson theorem gives us a complete determination of the 
asymptotic behavior of a large class of flows on the plane, cylinder, and two­
sphere. It is remarkable in that it assumes no detailed information about 
the vector field, only uniqueness of solutions, properties of w limit sets, and 
some properties of the geometry of the underlying phase space. We begin 
by setting the framework and giving some preliminary definitions. 

We will consider er, r > 1, vector fields 

x = f(x, y), 
ii= g(x, y), (x,y) E 'P, 

where P denotes the phase space, which may be the plane, cylinder, or 
two-sphere. We denote the flow generated by this vector field by 

where the "·" in this notation denotes a point (x, y) E P. 

The following definition will be useful. 

FIGURE 9.0.1. 
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Definition 9.0.1 Let E be a continuous, connected arc in P. Then :E is 

said to be transverse to the vector field on 'P if the vector dot product of 

the unit nonnal at each point on E with the vector field at that point is not 

zero and does not change sign on E. Or equivalently, since the vector field 

is er, r ~ l, the vector field has no fixed points on E and is never tangent 

to E. 

Now we are in a position to actually prove the Poincare-Bendixson theo­

rem. We will first prove several lemmas from which the theorem will follow 

easily. Our presentation follows closely Palis and de Melo [1982). In all that 

follows, M is understood to be a positively invariant compact set in P. 

For any point p E 'P, we will denote the orbit of p under the flow c!>t ( ·) for 

positive times O+(P) (also called the positive semiorbit of p). 

Lemma 9.0.2 Let E C M be an arc transverse to the vector field. The 

positive orbit through any point p EM, O+(p), intersects E in a monotone 

sequence; that is, if Pi is the ith intersection of O+(p) with E, then Pi E 

lPi-1,Pi+i]-

Proof: Consider the piece of the orbit O+(P) from Pi-I to Pi along with 

the segment [pi-1,Pi] C E (see Figure 9.0.1). (Note: of course, if O+(p) 

intersects E only once then we are done.) 
This forms the boundary of a positively invariant region V. Hence, 

O+(pi) C 'D, and therefore we must have Pi+l (if it exists) contained in 

V. Thus we have shown that p, E [pi-1,PHd· D 

\Ve remark that Lemma 9.0.2 does not apply immediately to toroidal 

phase spaces. This is because the piece of the orbit from Pi- l to Pi along 

with the segment [pi-l,Pi] c E needs to divide M into two "disjoint 

pieces." This would not be true for orbits completely encircling a torus. 

However, the lemma would apply to pieces of the torus that behave as M 

described above. 

Corollary 9.0.3 Thew-limit set of p (w(p)) intersects E in at most one 

point. 

Proof: The proof is by contradiction. Suppose w(p) intersects :E in two 

points, Q1 and Q2- Then by the definition of w-limit sets, we can find se­

quences of points along O+(p), {Pn} and {fin}, which intersect :E such that 

Pn --tq1 as n t oo and fin ~Q2 as n t oo. However, if this were true, then it 

would contradict the previous lemma on monotonicity of the intersections 

of O+(p) with E. o 

Lemma 9.0.4 If w(p) does not contain fixed points, then w(p) is a closed 

orbit. 
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Proof: The strategy is to choose a point q E w(p), show that the orbit of q 
is closed, and then show that w(p) is the same as the orbit of q. 

Choose x E w(q); then x is not a fixed point, since w(p) closed and is 
a union of orbits containing no fixed points. Construct an arc transverse 
to the vector field at x (call it r:). Now O+(q) intersects r: in a monotone 
sequence, {qn}, with qn-+X as n too, but since qn E w(p), by the previous 
corollary we must have Qn = x for all n. Since x E w(q), the orbit of q must 
be a closed orbit. 

It only remains to show that the orbit of q and w(p) are the same thing. 
Taking a transverse arc, E, at q, we see by the previous corollary that w(p) 
intersects E only at q. Since w(p) is a union of orbits, contains no fixed 
points, and is connected, we know that O(q) = w(p). □ 

Lemma 9.0.5 Let p1 and P2 be distinct fixed points of the vector field 
contained in w(p), p E M. Then there exists at most one orbit "f C w(p) 
such that a(-y) = p 1 and w('Y) = P2• (Note: by a(-y) we mean the a limit 
set of every point on"(; similarly for w(-y).) 

FIGURE 9.0.2. 

Proof: The proof is by contradiction. Suppose there exist two orbits 11 , 
"/2 E w(p) such that a("li) = P1, w(-yi) = P2, i = 1, 2. Choose points q1 E 11 
and Q2 E "/2 and construct arcs r:1, r:2 transverse to the vector field at each 
of these points (see Figure 9.0.2). 

Since 1'1, 1'2 C w(p), O+(P) intersects r:1 in a point a and later intersects 
E2 in a point b. Hence, the region bounded by the orbit segments and arcs 
connecting the points Q1, a, b, Q2, P2 (shown in Figure 9.0.2) is a positively 
invariant region, but this leads to a contradiction, since 'Yi, "/2 c w(p). □ 

Now we can finally prove the theorem. 
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FIGURE 9.0.3. a) 0 < o < v'B; b) o ~ v'8. 

Theorem 9.0.6 (Poincare-Be~~ixson) ~et M be a positively invariant 
region for the vector field containing a finite num_ber of fixed points. Let 
p EM, and consider w(p). Then one of the following possibilities holds. 

i) w(p) is a fixed point; 

ii) w(p) is a closed orbit; 

iii) w(p) consists of a finite number of fixed points Pi, • • • , Pn and orbits 

'Y with o:(-y) = Pi and w(-y) = Pi· 

Proof: If w(p) contains only fixed points, then it must consist of a unique 
fixed point, since the number of fixed points in M is finite and w(p) is a 
connected set. 

If w(p) contains no fixed points, then, by Lemma 9.0.4, it must be a 
closed orbit. Suppose that w(p) contains fixed points and nonfixed points 
(sometimes called regular points). Let 'Y be a trajectory in w(p) consisting 
of regular points. Then w('Y) and a(-y) must be fixed points since, if they 
were not, then, by Lemma 9.0.4, w( 'Y) and a( 'Y) would be closed orbits, 
which is absurd, since w(p) is connected and contains fixed points. 

We have thus shown that every regular point in w (p) has a fixed point 
for an a and w limit set. This proves iii) and completes the proof of the 
Poincare-Bendixson theorem. 0 

For an example illustrating the necessity of a finite number of fixed 

d 
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1 Exercises 9. 
P 

• care-Bendixson theorem to show that the vector field 
1. Use the om 

x = µx - y - x(x
2 + y2

), 

ii = x + µy - y(x
2 + Y2

), (x, y) E R2
, 

bas a closed orbit for µ > 0. (Hint: transform to polar coordinates.) 

2 
p ove that for 6 > 0 the unstable manifold of the saddle-type fixed point of the 

• u~forced Duffing oscillator falls into the sinks as shown in Figure 9.0.3. 
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FIGURE 9.0.4. 
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