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The Poincaré-Bendixson
Theorem

The Poincaré-Bendixson theorem gives us a complete determination of the
asymptotic behavior of a large class of flows on the plane, cylinder, and two-
sphere. It is remarkable in that it assumes no detailed information about
the vector field, only uniqueness of solutions, properties of w limit sets, and

some properties of the geometry of the underlying phase space. We begin
by setting the framework and giving some preliminary definitions.
We will consider C”, r > 1, vector fields

z = f(z,y),
v =g(z,y), (z,y) € P,

where P denotes the phase space, which may be the plane, cylinder, or
two-sphere. We denote the flow generated by this vector field by

¢t('):
where the “” in this notation denotes a point (z,y) € P.

The following definition will be useful.

n

FIGURE 9.0.1.
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connected arc in P. Then % i3
if the vector dot product of
d at that point is not
since the vector field
er tangent

Definition 9.0.1 Let ¥ be a continuous,
said to be transverse to the vector field on P
the unit normal at each point on X with the vector fiel
zero and does not change sign on Z. Or equivalently,

is CT, r > 1, the vector field has no fized points on ¥ and is nev

to X.

Now we are in a position to ac
rem. We will first prove several lemmas from which the theorem
easily. Our presentation follows closely Palis and de Melo [1982] . In all that
follows, M is understood to be a positively invariant compact set in P.
For any point p € P, we will denote the orbit of p under the flow ¢:(-) for

positive times O4(p) (also called the positive semiorbit of p).

tually prove the Poincaré-Bendixson theo-
will follow

Lemma 9.0.2 Let & C M be an arc transverse to the vector field. The
positive orbit through any point p € M, O+ (p), intersects ¥ in a monotone
sequence; that is, if pi is the ith intersection of Oy (p) with X, then pi €
[Pi—hPiH]-

Proof: Consider the piece of the orbit O (p) from p;_; to p; along with
the segment [p;—1,pi] C ¥ (see Figure 9.0.1). (Note: of course, if O4(p)

intersects ¥ only once then we are done.)
This forms the boundary of a positively invariant region D. Hence,

O+ (p;) C D, and therefore we must have pit1 (if it exists) contained in
D. Thus we have shown that p; € [pi—1,Pi+1]- =

We remark that Lemma 9.0.2 does not apply immediately to toroidal
phase spaces. This is because the piece of the orbit from p;_; to p; along
with the segment [p;—1,p;] C Z needs to divide M into two “disjoint
pieces.” This would not be true for orbits completely encircling a torus.
However, the lemma would apply to pieces of the torus that behave as M

described above.

Corollary 9.0.3 The w-limit set of p (w(p)) intersects ¥ in at most one
point.

Proof: The proof is by contradiction. Suppose w(p) intersects X in two
points, g1 and go. Then by the definition of w-limit sets, we can find se-
quences of points along O4(p), {pn} and {P,}, which intersect X such that
pn—q1 8s n 1 0o and pp,—q2 as n 1 co. However, if this were true, then it
would contradict the previous lemma on monotonicity of the intersections

of O.4(p) with 2. O

Lemma 9.0.4 If w(p) does not contain fized points, then w(p) is a closed
orbit.
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Proof: The strategy is to choose a point ¢ € w(p), show that the orbit of ¢
is closed, and then show that w(p) is the same as the orbit of q.

Choose z € w(g); then z is not a fixed point, since w(p) closed and is
a union of orbits containing no fixed points. Construct an arc transverse
to the vector field at z (call it X). Now O4(q) intersects £ in a monotone
sequence, {g,}, with g,—z as n 1 oo, but since ¢, € w(p), by the previous
corollary we must have g, = z for all n. Since z € w(q), the orbit of ¢ must
be a closed orbit.

It only remains to show that the orbit of ¢ and w(p) are the same thing,.
Taking a transverse arc, ¥, at g, we see by the previous corollary that w(p)
intersects ¥ only at q. Since w(p) is a union of orbits, contains no fixed
points, and is connected, we know that O(q) = w(p)- o

Lemma 9.0.5 Let p; and p2 be distinct fized points of the vector field
contained in w(p), p € M. Then there ezists at most one orbit v C w(p)
such that a(y) = p; and w(y) = ps. (Note: by a(y) we mean the o limit
set of every point on ~y; similarly for w(vy).)

FIGURE 9.0.2.

Proof: The proof is by contradiction. Suppose there exist two orbits 15
Y2 € w(p) such that a(vy;) = p1, w(y;) =ps, i = 1,2. Choose points q; € 11
and g2 € 72 and construct arcs £;, ¥y transverse to the vector field at each
of these points (see Figure 9.0.2).

Since 71, Y2 C w(p), O (p) intersects 21 in a point @ and later intersects
¥z in a point b. Hence, the region bounded by the orbit segments and arcs
connecting the points qi, a, b, g2, p> (shown in Figure 9.0.2) is a positively
invariant region, but this leads to a contradiction, since 71, 72 Cw(p). O

Now we can finally prove the theorem.
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FIGURE 9.0.3.a) 0< 0 < V8; b) § > /3.

Theorem 9.0.6 (Poincaré-Bendixson) Let M be a positively invarian;
region for the vector field containing a finite number of fized points. Let
p € M, and consider w(p). Then one of the following possibilities holds.

i) w(p) is a fired point;
ii) w(p) s a closed orbit;

iii) w(p) consists of a finite number of fired points p1,- -+, pn and orbits
v with a(y) = p; and w(y) = p;.

Proof: If w(p) contains only fixed points, then it must consist of a unique
fixed point, since the number of fixed points in M is finite and w(p) is a
connected set.

If w(p) contains no fixed points, then, by Lemma 9.0.4, it must be a
closed orbit. Suppose that w(p) contains fixed points and nonfixed points
(sometimes called regular points). Let 4 be a trajectory in w(p) consisting
of regular points. Then w(v) and a(y) must be fixed points since, if they
were not, then, by Lemma 9.0.4, w(y) and a(y) would be closed orbits,
which is absurd, sincé w(p) is connected and contains fixed points.

We have thus shown that every regular point in w(p) has a fixed point

for an o and w limit set. This proves iii) and completes the proof of the
Poincaré-Bendixson theorem. 0

For an example illustrating the necessity of a finite number of fixed
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otheses of Thccn:cm Q.Q.G see Palis and de Melo [1982)
., the h)fPB f the Poincaré-Bendixson theorem tg arbitrary ;
g 40 U0 tion
pglﬂézncrg,llfla‘técc SChwa'rtz [1963].
v L} s
P:!;' maﬂlfol plication to the Unforced Duffing Oscillator).
b 0.1 Poincaré-Bendixson theorem to
plo 9 1t 60 apply the Oiven % 0 the unforced Duffing
2 e no" g h, we recall, i8 8 y
WhiC 1y
g & = U
y'-_;;;:—:ss-—dy, §d>0.

closed

pat the Jevel sets of V (z, y) = y2/2——”5'2/2+.’£4/4 bound positively
A he tt 5 > 0, we see that the unstable manifold of the saddle must fall
stng_ant gets for 1 in Figure 9.0.3. The reader should convince him- or herself
y justified based on analytical techniques developed
in Figure 9.0. ote that we have not pro»_'ed 'anythi.ng about the global behavior
I ~ifold of the saddle. Quallte.Ltlve:ly, it behaves as in Figure 9.0.4,
smi?his has not been rigorously justified.
we stress)

/,_,_,— End of Example 9.0.1
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1 0.1 Exercises

h poincaré—BendiXSOH theorem to show that the vector field
1. Use the
& = pr—y—o(@ +v°)
g=z+py—v@ +y°), (zy) R’

has a closed orbit for p > 0. (Hint: transform to polar coordinates.)

for & > 0 the unstable manifold of the saddle-type fixed point of the

hat 5 E——
2. Prove thal fing oscillator falls into the sinks as shown in Figure 9.0.3.

unforced Du
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FIGURE 9.0.4.
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