Homework3

Homework 3.1

- **E.2** The watch has a spring inside which obeys Hooke's law: F = -kx. The force is proportional to the displacement; thus the further you wind the clock (spring), the harder it will be to wind it.
- **E.3** The top of the curl supports more weight than the bottom.
- **E.6** The weight reported by the scale will be lower, since part of your weight will be supported by the table.
- E.8 The weight will be low, since only the normal force component will be measured (red arrow in diagram).

E.27 White you can feel accelerations, you can't feel velocity
$$\frac{3}{x} = \lambda$$

E.29 When the rattle accelerates, the beads inside it continue $\frac{3}{x} = \lambda$ on and hit the walls of the rattle. The rattle then makes if $(0.000) = 0.000$
E.31 The sharper the curve, the more contributed force the $(0.00) = 0.000$
rain needs to accelerate around the curve. If the track $(0.00) = 0.000$
supply it, dispater $(0.00) = 0.000$ $(0.00) = 0.000$ $(0.00) = 0.000$ $(0.00) = 0.000$ $(0.00) = 0.000$ $(0.00) = 0.000$

P. 2

Your weight pushes the trampoline olown 0.12 m (and the fram poline is pushing up with the same force Hooke's law (Fax): If the transpoline is pushed down 0.3 m, it pushes on you with 0.3 = 2.5 x your weight