Discussion

Reply to a comment on sequential elections and overlapping terms: voting for US senate

Jac C. Heckelman*

Department of Economics, Wake Forest University, P.O. Box 7505, Winston-Salem, NC 27109-7505, USA

Received 3 November 1999; accepted 10 November 1999

JEL classification: D72; H11

Keywords: Primary elections; Divided government; Strategic voting

1. Introduction

The phenomena of divided senate delegations, whereby several states are represented by senators from opposing political parties and differing political ideology, may at first blush seem at odds with the traditional median voter model. In a recent paper (Heckelman, 2000), I have modified the median voter framework by introducing two key institutional aspects, primary elections and staggered terms, which lead to predictions that the two parties alternate victories in successive elections, and the winning politicians hold extremely divergent positions.

After a careful reading of the paper, Swank (2001) has called into question two of the underlying assumptions concerning voter motivation which drive the results. First, Swank believes voters in the primaries would not vote sincerely, rather they would behave strategically by supporting candidates most likely to capture the median voter in the general election instead of the candidate they most prefer themselves. It is then argued both parties would fully converge to the median. Second, Swank considers a different form of voter balancing than I utilized, but argues that even balancing within the state will result in full convergence among the two candidates in the general election (but not among the two winning senators). I consider each of these issues in turn and show the incorporation of strategic voting into
the general model leads to only partial convergence in the short-run and full divergence in the long-run.

2. Primary elections and divergence

Swank argues that primary elections will not lead to divergent positions because voters in the primary look to support candidates who have a better chance of winning the general election. It needs to be pointed out that the assumption of sincere voting was a simplifying, not a critical assumption to the model. From the point of view of the voter, there is no need to support a candidate at the population median once it is believed the other party will nominate someone at the median position. If both candidates are identical, the party label itself will have no effect on future policy. Thus, primary voters face trade-offs in nominating a candidate. Aranson and Ordeshook (1972) were the first to show that the conjectural variation game leads to only partial convergence toward the population median. Others have since derived similar results, but there must be some degree of uncertainty over the voter distribution or ambiguity over candidate positioning, which differs from the full information model I analyzed. Swank is correct to point out that when elections are independent events (i.e. voters do not attempt to balance representation), full convergence to the median is to be expected when primary voters are strategic and have perfect information.

In this case, one wonders what function the primary serves. If primary voters strategically focus exclusively on the population median, and therefore so will office-seeking candidates, this completely ignores the importance of the party nomination process. During the primary, candidates have to focus on placating their party’s supporters. Otherwise, it calls into question the purpose of holding a primary.

Ultimately, this is an empirical question as to whether primaries lead to divergence, or as Swank wants to argue, actually reinforces convergence. There has not been much work done in this area, but Gerber and Morton (1998) find that for US Representatives there is greater divergence for the position they hold (proxied by their ADA score) from the estimated position of their district’s median voter when they come from a state with a closed primary system.

Whether primaries by themselves lead to full, partial, or no convergence should not derail the central theme of the earlier paper. As I show in the next section, including strategic voting in the primaries still leads (eventually) to full divergence among elected senators when voters seek to balance their representation of two senators that serve overlapping terms.

3. Balancing senators due to overlapping terms

The critical assumption of the model is that voters view their own senators in isolation from the rest of the senate. Swank prefers to model voters as interested in the overall composition of the senate, ignoring the individual voting records of any given senator. Thus, when the Democrats were the majority party in the senate, and legislation
was fairly leftist, liberal voters from North Carolina, happy with current policy, should have been eagerly supporting the arch-conservative Jesse Helms for reelection. This seems implausible. Swank proceeds to show that even if voters are only interested in balancing their two senators, full convergence to the state median is expected. However, his analysis is incomplete. I now reintroduce some of the notation to derive the full implications of such a model.

The three critical voters on the line interval \([-X, X]\) are the left party, right party, and state medians, denoted by \(b_{ML} = -\frac{1}{2}X\), \(b_{MR} = \frac{1}{2}X\), and \(b_M = 0\). Voters left of the state median nominate a candidate \(L_t \in [-X, 0]\) and voters right of the state median nominate a candidate \(R_t \in [0, X]\), in each election \(t\), resulting in the general election \(\prod_t = \{L_t, R_t\}\). Given that each voter \(i\) seeks to balance the senatorial candidates with the position of the senator who won the previous election, \(S_{t-1}\), it was shown from Proposition 1 that the preferred candidate will hold position

\[
W_t = 2b - S_{t-1}.
\]

Swank correctly argues that under the constructs of the full information model, when the sitting senator already holds the median position, strategic voters in each party will support a clone candidate at the median position, since this is who the state median prefers from (1). But this result is knife-edged. Any deviation from \(S_{t-1} = 0\) will not result in full convergence, and in fact, will eventually lead to full divergence among the two sitting senators in the stable long-run equilibrium.

Suppose \(S_{t-1} = d > 0\). Substituting the relevant positions of the critical voters into (1) yields \(W_{ML_t} = -X - d\), \(W_{MR_t} = X - d\), and \(W_{M_t} = -d\). Since \(W_{ML_t}\) is outside the endpoints, it is constrained to \(W_{ML_t} = -X\). Under sincere voting, given \(\prod_t = \{-X, X - d\}\), the state median will opt for \(L_t = -X\) (even though the balancing is not ideal from her viewpoint, it is still preferable to the balance \(R_t = X - d\) will generate) and the left candidate will win. Swank’s concern is that primary voters should realize this and the right party voters should instead nominate a candidate more preferable to the state median. Since the state median prefers someone left of center, the best candidate the right party can offer instead is \(R_t' = 0\) which would result in a balancing equal to \(1/2d\). Voters in the left party thus need to find a candidate who will achieve a balance just closer to the state median in absolute difference but would obviously prefer the median voter be forced to move toward the left rather than right. Thus, left primary voters search for balance \(>\frac{1}{2}d\) or more specifically, \(>-\frac{1}{2}d\). Substituting this value for \(b_{ML_t}\) in (1) implies the left party will counter by offering \(L_t' = -2d + \varepsilon\), where \(\varepsilon\) is a small positive value. Thus, convergence is not achieved and the winning candidate \(L_t' = -2d + \varepsilon\) is further away from the median position than the other sitting senator. Therefore in future elections, further balancing, even with strategic primary voting, will lead to greater and greater divergence. For example, in the next election strategic voters will nominate candidates such that \(\prod_{t+1} = \{0, 4d - \varepsilon\}\) with the right party candidate emerging victorious. Eventually, the endpoints will be reached by winning candidates.

Thus, Proposition 4 and the formulation on policy platforms from the original article remain valid.
Proposition 4. The stable long-run equilibrium returns opposing extremists to office.

Election outcomes in the long-run equilibrium take the form of:

\[
\begin{align*}
\prod_{t}^{+f} &= \{0, X\}, S_{t}^{+f} = X, \text{ when } f \text{ is odd} \\
\prod_{t}^{+f} &= \{-X, 0\}, S_{t}^{+f} = -X, \text{ when } f \text{ is even}
\end{align*}
\]

The above formulation was taken from the proof of Proposition 4 and as explained above is still valid for large enough values of \(f\), whereas under sincere voting it held for all \(f\).

The two main implications as stated in the original paper’s abstract still hold true: (i) convergence on platform positions is not achieved in the general election, and, (ii) extremist candidates defeat moderates in the stable long-run equilibrium.

References

