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1 Introduction

The Borromean Rings in Figure 1 appear to be made out of circles, but a
result of Freedman and Skora shows that this is an optical illusion (see [F]
or [H]). The Borromean Rings are a special type of Brunninan Link: a link
of n components is one which is not an unlink, but for which every sublink
of n − 1 components is an unlink. There are an infinite number of distinct
Brunnian links of n components for n ≥ 3, but the Borromean Rings are the
most famous example.

This fact that the Borromean Rings cannot be formed from circles often
comes as a surprise, but then we come to the contrasting result that although
it cannot be built out of circles, the Borromean Rings can be built out of
convex curves, for example, one can form it from two circles and an ellipse.
Although it is only one out of an infinite number of Brunnian links of three

Figure 1: The Borromean Rings.
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components, it is the only one which can be built out of convex compo-
nents [H]. The convexity result is, in fact a bit stronger and shows that no 4
component Brunnian link can be made out of convex components and Davis
generalizes this result to 5 components in [D].

While this shows it is in some sense hard to form most Brunnian links
out of certain shapes, the Borromean Rings leave some flexibility. This leads
to the question of what shapes can be used to form the Borromean Rings
and the following surprising conjecture of Matthew Cook at the California
Institute of Technology.

Conjecture 1.1. (Cook) Given any three unknotted simple closed curves in
R3, they can always be arranged to form the Borromean Rings unless they
are all circles.

In this paper we show that any three polygonal unknots, sometimes called
stick knots, (consisting of straight edges meeting at a set of vertices) can
be used to form the Borromean Rings through rigid transformations of the
components in R3 together with scaling of R3 applied to the individual com-
ponents. Note that since any knot can be approximated with a polygonal
knot that is arbitrarily close to it, any set of three unknots comes arbitrarily
close to forming the Borromean rings: even three circles which themselves
cannot form the Borromean Rings.

One of the neat things about this theorem and proof is that the theorem
is counterintuitive and yet it can be proven using techniques more or less en-
tirely from freshman calculus and first semester undergraduate linear algebra
together with simple combinatorial arguments.

2 Any three polygonal knots can be used to

form the Borromean rings.

Virtually the same construction will work to prove both of the following the-
orems. The main difference is that the scaling necessary in the first theorem
can be omitted in the second one.

Theorem 2.1. Let K1, K2, and K3 be three polygonal unknots, then we may
form the Borromean rings out of them through rigid motions of R3 applied
to the individual components together with scaling of one of the components.
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Theorem 2.2. Let K1, K2, and K3 be three polygonal unknots, at least one of
which is planar, then we may form the Borromean rings out of them through
rigid motions of R3 applied to the individual components.

We will say that a vertex v of a polygonal knot is an extremal vertex if
there is some plane which intersects the knot only in v and therefore there
is a direction vector with respect to which v is the knot’s unique global
maximum.

In topology two manifolds are said to fail to be in general position (or
to not intersect transversally) if moving one of the them an arbitrarily small
amount changes the intersection topologically, i.e. up to homeomorphism
such as a change in the number of components of intersection or topological
type, otherwise they are in general position (and they intersect transversally).
For example, the x and y axis in R2 are in general position because they
intersect in one point and moving one of them minimally will not change
this, but the x and y axis viewed as a subset of R3 are not in general position
because moving one of the axis less than ε can result in the lines becoming
disjoint.

To preview the argument and build intuition, we now give an outline of
how the knots will be positioned in the proof. We first pick an extremal
vertex for each of the three knots and position the knots so that all three
extreme vertices are at the origin, but for K1 the pair of edges leaving the
extremal vertex are horizontal (lie in the xy-plane) and the other two knots
have edges leaving the critical vertex that are vertical, lying in the yz-plane
as in Figure 2. For the vertical knots we position them so that one has its
global maximum at the origin and the other has its global minimum at the
origin. At this point if the knot with two horizontal edges is not planar, we
scale it up until all its edges other than the two leaving the critical vertex
are far from the other two knots, but keeping the vertex at the origin fixed
- the scaling is unnecessary if this knot is planar.

The knots and disks are not in general position because moving them less
than ε can eliminate or increase intersections. We address this by moving
the two knots minimally to put them in general position with a specified
intersection pattern as follows.

We translate the knot with its maximum at the origin up a bit and the
knot with its minimum at the origin is pushed down slightly as in Figure 3.
Finally rotating one of the knots a tiny bit and translating another is enough
to create the following intersection pattern: each Dr will intersect Ds ∪Dt,
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Figure 2: The Knots are initially moved so they have an extreme vertex at the
origin. {e1, f1} ⊂ K1 lies in the xy-plane, {e2, f2} ⊂ K2 and {e3, f3} ⊂ K3

lies in the yz-plane. K1 has its global extremum at the origin with respect
to some vector in the xy-plane. K2 has its global maximum with respect to
z at the origin and K3 has its global minimum with respect to z a the origin.
On the right we see a vector ~w with its head at v2 and its tail at the other
vertex of f2 and we see the vector ~v with its head on v3 at the origin and its
tail between e3 and f3. Although it is vertical here, it need not be in general.

r 6= s 6= t, in a pair of crossed arcs, one of which will have its end points on
Kr and the other having its end points in the interior of Dr as in Figure 8.
This intersection pattern occurring on all three disks is well known to imply
the link is the Borromean Rings.

With the outline in mind, we now provide the complete details of the
proof.

Proof of Theorems 2.1 and 2.2: The two proofs are nearly identical, so
it will be easy to prove both at the same time. We start by arguing that
we may use rigid transformations of R3 to position K1, K2, and K3 as they
appear in Figure 2 and then use a translation to arrive at Figure 3. In the
case where one of the components is planar, let it without loss of generality,
be K1. For each Ki we pick an extremal vertex (a vertex that is a global
maximum with respect to some direction vector) which we will call vi. The
edges adjacent to vi will be called ei and fi.

We initially position v1, v2, and v3 at the origin. To be specific, for
K1 place e1 in the xy-plane so that v1 is at the origin and e1 lies on the
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Figure 3: We shift K2 slightly in the direction of the vector ~w and K3 slightly
in the direction of ~v.

(negative) y-axis. Fixing this edge rotate K1 until f1 lies in the xy-plane
and has positive values for x coordinates aside from at the point v1 which
has x coordinate 0. Place K2 so that v2 is at the origin, e2 and f2 lie in the
yz-plane, and so that v2 is the unique global maximum of K2 with respect
to z. Place K3 so that v3 is at the origin, e3 and f3 lie in the yz-plane,
but so that v3 is the unique global minimum of K3 with respect to z (or
equivalently it is the unique global maximum with respect to −z). If any
two edges of {e2, f2, e3, f3} are co-linear then rotate K2 slightly around the
x axis. A sufficiently small rotation will fix v2 and preserve the required
properties above.

The proof will be dependent on f2 being the least steep edge from the
collection {e2, f2, e3, f3} (in other words the absolute value of the slope of f2 in
the yz-plane is less than the absolute value of the slopes of e2, e3 and f3 in the
plane). This can easily be achieved through rotations and possible relabeling
of K2 and K3 (possible moves include rotating K2 or K3 180 degrees around
the z axis and switching the labels of the corresponding pair ei and fi so
that the edge labeled ei remains to the left of the edge labeled fi in the yz
plane, and/or possibly rotating K2 ∪K3 180 degrees around the x axis and
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switching the labels of the two knots as well as the names of the edges).

Lemma 2.3. If vi is a unique global maximum for an unknot Ki (with respect
to some direction vector) then we may choose a disk Di whose boundary is
Ki and which also has the point vi as its unique global maximum in the same
direction.

Proof. This is done with a standard argument in three manifold topology
called an innermost loop argument. Since there is a plane that intersects Ki

in vi and otherwise contains Ki entirely on one side of it, we can also find a
sphere tangent to the plane at vi, intersecting the knot only in vi and which
otherwise contains Ki entirely inside of it (as the radius of the spheres tangent
to the plane at vi goes to infinity, the spheres limit on the plane). Now pick
an embedded disk Di for Ki whose interior intersects S transversally in a
minimal number of components. Since Ki ∩ S is a single point there are no
arcs of intersection in S ∩ Di. This means all remaining intersections may
be assumed to be circles (if the surfaces intersect transversally away from vi
this will be true. If not we may move the disk an arbitrarily small amount
ensuring that they do intersect transversally). If the set of circles is nontrivial
take an innermost circle on S (one of the components of S∩Di that bounds a
disk on S disjoint on its interior from S∩Di) and cut and paste Di replacing
the component of Di − (Di ∩ S) that is bounded by this circle and does not
contain Ki by the corresponding subset of S. Pushing the new disk slightly
off of S gives a new disk D′

i that intersects S fewer times than Di did yielding
a contradiction to the existence of circles of intersection and showing that
we may assume Di ∩ S = vi.

When positioning and scaling D1, we will be interested in the distance
between two points p and q on D1 measured in two different ways. The first
will be ρ(p, q), the length of the shortest path on D1 between p and q. The
second will be d(p, q), the distance between p and q in R3. Obviously since
D1 is embedded in R3 d(p, q) ≤ ρ(p, q). We want to argue that we may pick
D1 such that for v1 together with some sufficiently small ε > 0 the points
on D1 less than ε from v1 will be exactly the same set of points whether
measured in the ρ metric or the d metric.

We may assume that there is some ε1 > 0 such that the portion of D1 less
than ε1 away from v1 in the ρ metric is a subset of the flat triangle contained
in the xy plane running between e1 and f1 (if K1 is planar we will just choose
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D1 to be the planar subset of the xy plane bounded by K1). Now let J1 be
D1 after deleting an open set consisting of the points in D1 less than ε1 away
from v1 using the ρ metric. J1 is compact and does not contain v1. As a
result, we now can find a positive number that is the minimum distance from
v1 to any point in J1 using metric d. Choose a positive number less than
the minimum of this value and ε1 and call it ε. Now we know that an ε
ball around the origin in R3 (in the tradition metric d) intersects D1 only in
points contained in the xy plane and thus the set of all points of D1 less than
ε away from v1 in the d metric is identical to the set of all points of D1 less
than ε away from v1 in the ρ metric. An analogous argument may be used
for D2 and D3.

Lemma 2.4. If K1 is planar then we may assume that Di ∩ Dj, i, j ∈
{1, 2, 3}, i 6= j is vi = vj the two vertices at the origin. If K1 is not pla-
nar, we may scale K1 up until Di ∩Dj, i, j ∈ {1, 2, 3}, i 6= j is again vi = vj.

Proof. Pick D2 and D3 to be flat near the origin and according to Lemma 2.3
so that they intersect the xy plane only at the origin. This ensures that they
intersect each other only at the origin. If K1 is planar, the result follows by
picking D1 to be the flat disk totally contained in the xy plane. If not then
for each i, let ri be the maximum distance from the origin to any point of
Di (in the metric d). Without loss of generality let r2 ≥ r3. Scale K1 up by
multiplying by the three by three matrix λI, where λ > r2

ε
. This will ensure

that any point on D1 that is not in the xy plane is farther from the origin
than any point in D2 or D3. Thus the only place where D2 or D3 could
intersect D1 would be where they intersect the xy plane, which is only at the
origin.

This is the only scaling we need in the proof of Theorem 2.1 and no
scaling is needed in the proof of Theorem 2.2. Otherwise the proofs of the
two theorems are identical. All other transformations will be translations
and rotations. We now fix K1 for the rest of the proof and move the other
two knots slightly starting with K2.

From now on when we talk about distance we will only refer to the stan-
dard metric d in R3 and not the metric ρ.

Lemma 2.5. Given disks {D1, D2, D3} intersecting only at the origin and
bounded by knots {K1, K2, K3} as above, then for any ε > 0 if we let {J1, J2, J3}
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be equal to {D1, D2, D3} minus the portion of the Di’s in an open ε ball around
the origin, and given any translation of R3 acting on a given Di or any ro-
tation of that Di about a fixed axis l, then there exists an ε′ such that any
translation of distance less than ε′ or rotation about l of angle less than ε′

leaves the Ji’s pairwise disjoint.

Proof. Since Ji ∩ Jj = ∅ and they are both compact, there is a positive
minimal distance s between any point in Ji and Jj. Setting ε′ < s will ensure
that translating one of the disks less than ε′ cannot create an intersection.
Similarly after fixing an axis of rotation we can pick a small enough angle
such that rotating Ji will move no point of Ji more than ε′.

The virtue of Lemma 2.5 is that we now know that during all our re-
maining manipulations of the disks and knots no new intersections will be
introduced and all intersections will occur in an ε ball neighborhood of the
origin on the flat triangular pieces of the Di’s running between ei and fi (ie
the portions of the Di’s not contained in the Ji’s) .

Let ~w be the vector with its head at v2 and parallel to f2 (its tail may
be thought of as lying on the other vertex of f2) as in Figure 2. Translate
K2 by adding ε ∗ ~w to every point on K2 for a sufficiently small ε in order to
translate K2 (and D2) minimally up in a direction parallel to f2. We want to
be certain that none of the vertices of K2 other than v2 rise up to or above
the xy-plane, that e2 ∩ e1 remains nontrivial, and that v3 is the only critical
point of K3 that v2 rises above. Choosing a sufficiently small ε will ensure all
of these properties, as would any positive translation smaller than ε. Now v2
is very close to, but above v1, f2 intersects the origin (v1), and e2 intersects
e1 in some point other than v1. K1 and K2 look as they do in Figure 3 and
we need to reposition K3 to match the figure.

With the exception of v2 and v3 all critical points of K3 are now above
all critical points of K2. The fact that f2 is not as steep as e3 and f3 ensures
that both e3 and f3 are on the same side of the line containing f2 in the
yz-plane. f2 being less steep than e2 and on its right in the yz plane ensures
that f2 has negative slope. Let ~v be a vector with its head on v3 at the origin
and its tail between e3 and f3 as in Figure 2. Translate K3 by δ ∗ ~v for a
small δ. This keeps e3 and f3 in the yz-plane. Choosing a sufficiently small
δ again makes sure that the critical points of K3 aside from v3 remain above
the critical points of K2, all the critical points of K2 other than v2 remain
below all the critical points of K3, and that K2 ∩K3 consists of exactly two
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points, e3 ∩ f2 and f3 ∩ f2. Finally to complete the figure pick l, a line in
the yz-plane parallel to f2, but separating f2 from v3. Let l ∩ e3 be called
pe and let l ∩ f3 be called pf . We must pick l close enough to f2 so that pe
is above e1. This is easy to do since e1 lies on the y-axis and we need only
make sure that pe has positive z-coordinate. The fact that f2 goes through
the origin, has negative slope, and that the point e3∩f2 is to the left of the z
axis ensures that it has positive z coordinate so if l is sufficiently close to f2
then pe will, too. Since f2∩f3 occurs to the right of the origin, it has negative
z-coordinate, and pf is below this point, pf will have negative z-coordinate.

Recall that we have already established that in Figure 3 we may assume
the Di are all disjoint from the neighborhood of the origin depicted except
in the obvious flat triangular subdisks and that the Di are disjoint from each
other outside of the figure.

Now we want to put the knots and disks in general position. This process
will take us from Figure 3 to Figure 6. Because general position is always
easy to attain with infinitesimally small transformations we can pick a small
number ε and no point of the knots or disks will move more than ε over
the rest of the proof. This ensures that the only new intersection patterns
between the disks will be the result of local changes in the current intersection
patterns.

For the rest of the proof K1 will remain fixed. Now rotate K3 around l
so that the x coordinate of v3 becomes negative and so that D3 is in general
position with respect to both D1 and D2 (although D1 and D2 are still not
in general position with respect to each other). Rotating by a small enough
angle will ensure that no point on K3 or D3 moves more than ε. The rotation
will fix pe and pf , will cause all the points on the same side of l as v3 to have
negative x coordinates and all the points of e3 ∪ f3 on the other side to have
positive x coordinates. Before rotating D3 intersected D1 in a single arc,
subset of e1 running from e3 ∩ e1 to v1, including the single point l ∩ D1.
After the rotation D1 ∩D3 will remain an arc, l ∩D1 will be one endpoint,
and the arc of intersection will rotate about this point and the other end
point will move away from the origin (v1) to a point on f1 with positive x
coordinate as in Figure 7.

Before rotating D3, D2 ∩ D3 was a triangle formed by intersecting the
triangle subset of D2 running from e2 to f2 and the analogous triangle on
D3 from e3 to f3. The two triangles and thus the intersection contained the
portion of l running from pe to pf . After rotating this portion of l will be
the only portion of D3 near the origin contained in the xy plane. Since we
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Figure 4: The initial intersections of the disks D1∩D2, D1∩D3, and D2∩D3

respectively are shown in gold. They are not yet in general position.

have already established that all intersections will occur near the origin this
means that D2 ∩D3 is exactly the arc of l running from pe to pf . Now D3 is
in general position with respect to both D1 and D2.

Finally we must translate K2 and D2 slightly so that D1∩D2 is in general
position. This will move D2 ∩D3 infinitesimally, but since they are already
in general position and the move will be minimal it will not be enough to
change the intersection pattern of those two topologically so for our purposes
we may think of it as essentially unchanged. Before translating D2 ∩ D1 is
the subset of the edge e1 running from e1 ∩ e2 to v1 = e1 ∩ f2. Let ~u be a
vector in the xy-plane with tail at the origin (v1) and head on the triangular
portion of D1 between e1 and f1 as in Figure 5. Translate K2 by ρ ∗ ~u where
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Figure 5: K3 has been rotated and the Borromean rings will be formed once
we translate K2 slightly in the direction of horizontal vector ~u which lies in
the xy-plane with its tail at the origin and its head between e1 and f1.

|ρ∗~u| is small enough to satisfy Lemma 2.5. Since D2 and D3 were in general
position and our translation was minimal, D2 ∩D3 remains an arc as before
(although it is no longer a subset of l). D1 and D2 now are in general position
and D1 ∩D2 becomes an arc from e2 ∩D1 to f2 ∩D1 that is parallel to, but
now disjoint from e1.

All the disks are now in general position and the link looks locally like
Figure 6. The disks now each intersect the union of the other two in a cross
as in Figure 8. It is not hard to show that this intersection pattern can only
result from the Borromean Rings. See, for example, [H2].

3 Conjectures and open questions

We conclude with some open questions and conjectures.

Conjecture 3.1. Any three planar curves can be used to form the Borromean
rings as long as at least one is not a circle.
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Figure 6: The Borromean Rings.

Planar was convenient and was necessary at times for the proofs in [H3],
but it is not clear that the theorem fails without it even if this proof does.

Conjecture 3.2. Any three unknots can be used to form the Borromean
rings through rigid transformations and scaling applied to the individual com-
ponents as long as at least one is not a circle.

Question 3.3. Can any three curves be used to form the Borromean rings
through rigid transformations applied to the individual components as long
as one is not a circle? (Here scaling is not allowed.)
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Figure 7: The Intersections of the disks in the final format D1∩D2, D1∩D3,
and D2 ∩D3 respectively are shown in black. Note that each time the black
arc has end points on one of the knots (in the top left K1, top right K2, and
bottom K3) and on the interior of the disk bounded by the other knot. If
all three arcs were drawn in the same picture we would see that the top two
form a cross in the xy-plane intersecting in a single point on the interior of
both arcs. The third arc intersects the xy-plane they would cross in a single
point on its interior, which also is the unique point where it intersects the
other two arcs.
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Figure 8: Dr∩ (Ds∪Dt) looks like the figure above for any distinct choices of
r, s, t ∈ {1, 2, 3}. This can only happen in the case of the Borromean rings.
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