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1. INTRODUCTION. Can the link depicted in Figure 1 be built out of round circles
in 3-space? Surprisingly, although this link appears to be built out of three round
circles, a theorem of Michael Freedman and Richard Skora (Theorem 2.1) proves that
this must be an optical illusion! Although each component seems to be a circle lying
in a plane, it is only the projection that is composed of circles and at least one of these
components is bent in 3-space.

Figure 1. The Borromean Rings are a Brunnian link.

In this article we shed new light on the Freedman and Skora result that shows that
no Brunnian link can be constructed of round components. We then extend it to two
different traditional generalizations of Brunnian links.

Recall that a “knot” is a subset of R3 that is homeomorphic to a circle (also called
a 1-sphere or S1). Informally, a knot is said to be an “unknot” if it can be deformed
through space to become a perfect (round) circle without ever passing through itself
(see Figure 2); otherwise it is knotted (see Figure 3).

Figure 2. The figure on the left is an unknot because it can be straightened to look like the figure on the right
without introducing any self-intersections.

A “link” L is just a collection of disjoint knots. A link L is an “unlink” of n com-
ponents if it consists of n unknots and if the components can be separated without
passing through each other (more rigorous definitions are given in section 3). Figure 2
could be thought of as an unlink of two components. Figure 4 shows the Hopf link, the
simplest two-component link that is not an unlink.
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Figure 3. The trefoil is not an unknot because to deform it to a round circle it must pass through itself.

Figure 4. The Hopf link.

A link L is Brunnian if L is a link of n(≥ 3) components such that L is not the
unlink of n components but such that every proper sublink of L is an unlink. The most
famous Brunnian link is called the Borromean rings (Figure 1). Note that eliminating
any one of the components yields an unlink, as in Figure 5. In Figure 6, we see a
nontrivial link that is not Brunnian.

Figure 5. The Borromean Rings become an
unlink if any component is deleted (here we
have deleted the bottom left component, but any
component would have yielded the same result).

Figure 6. This is not an unlink, but it is not
Brunnian either (if we remove the component
in the center it becomes an unlink, but if we re-
move the component on the right, it does not).

2. A LITTLE HISTORICAL CONTEXT. Brunnian links were introduced over a
hundred years ago when knot theory was in its infancy. Hermann Brunn first mentioned
them in his 1892 paper “Über Verkettung” (On Linking) [1].

In 1961 Debrunner furnished rigorous proofs for some of the claims in [1] by using
the tools and language of modern knot theory [3]. Debrunner also generalized Brun-
nian links by defining (m, k)-Brunnian links. A link is (m, k)-Brunnian if it has m
components, if no sublink of k or more components is an unlink, but if every sublink
of at most k − 1 components is an unlink. Thus an (m, m)-Brunnian link is a traditional
Brunnian link. Further work on these links was done by Penney in 1961 [7].

Takaaki Yanagawa also looked at a different generalization of Brunnian links in
1964. He considered higher dimensional analogues and gave examples of 2-spheres in
R4 that formed Brunnian links [8].
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In 1987 Freedman and Skora proved the following theorem in their paper “Strange
Actions of Groups on Spheres” [4]:

Theorem 2.1 (Freedman, Skora). No Brunnian link can be built out of round circles.

The theorem went largely unnoticed because it is buried in a technical paper as a tool
for investigating conformal and quasiconformal actions on S3. In the paper Freedman
and Skora give an example of a discrete, smooth, uniformly quasiconformal action on
S3 that is not conjugate under any homeomorphism to a conformal action and also an
example of an action of the free group Fr of rank r(≥ 2) on S3 that is not conjugate
to a uniformly quasiconformal action, even though every element of Fr individually is
conjugate to a conformal transformation.

Because few people knew about Theorem 2.1, the special case of the Borromean
rings was reproved in the early ’90s by Bernt Lindstrom and Hans-Olov Zetterstrom
[6], without any reference to the previous result of Freedman and Skora. Their proof
was more complicated and less general than Freedman and Skora’s. In 1993, Ian Agol
independently (unpublished) gave the simplest proof known at this writing for the
Borromean rings.

In this paper we generalize Freedman and Skora’s result to higher dimensional links
by obtaining the following result (Theorem 5.1): No Brunnian link in Rn can be built
out of round spheres. It is also easy to generalize this further to Corollary 5.3: No
(m, k)-Brunnian link in Rn can be built out of round circles (spheres) if k > 2.

Note that the definition of an (m, k)-Brunnian link does not make sense if k < 2,
and it is not interesting if k = 2, since the second condition reduces simply to the
requirement that the components of the link be unknots (and thus trivially one-
component unlinks). Figure 7 show a (3, 2)-Brunnian link built out of round circles.
This time it is not hard to confirm that it is not an optical illusion. The link is a gen-
eralization of a Brunnian link, but is not itself a Brunnian link, so we do not have a
contradiction to Freedman and Skora’s theorem.

Figure 7. A (3, 2)-Brunnian link made out of three round circles.

A third, partial generalization appears in [5]. It replaces the requirement that the
components of the link be round circles with the demand that they merely be convex
curves (curves that bound convex, planar regions) and concludes:

Theorem 2.2. The Borromean rings are the unique Brunnian links of three or four
components that can be formed out of convex curves.

Robert Davis has since extended this result and established the following one [2]:

Theorem 2.3. No Brunnian link of five components can be formed out of convex
curves.

116 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 115



We make a few observations about Brunnian links. For each n(≥ 3) there are an infi-
nite number of nonequivalent Brunnian links with n components. One four-component
Brunnian link is pictured in Figure 8. We see that if any single component is deleted,
the others can be pulled apart one component at a time. Note also the four-fold sym-
metry. It is easy to use this symmetrical structure to build a Brunnian link of n compo-
nents.

Figure 8. A Brunnian link with four components.

Another, more flexible method of construction is to take the two-component links
that can be represented by two-strand braids and take the so-called Bing double of
one of the components (see Figure 9). A Bing double is obtained by replacing a single
knot with two knots. The two new knots must be contained in a small neighborhood
of the knot being replaced. The two new components should be clasped together, but
not linked as a pair. We see one of the knots in Figure 9 replaced with its Bing double.
Notice that the two new components follow the path of the component they replace.
Alone they form an unlink of two components, but together with the unaltered com-
ponent they give a three component link that is not an unlink. This process yields an
infinite family of three-component Brunnian links. If we double one of the components
of each of the new links we get an infinite family of four-component Brunnian links.
We can, of course, continue this process as long as we like.

Section 3 introduces the necessary definitions and notation. Section 4 provides some
simple lemmas about intersections of flat balls in dimension three or higher that are
then used in section 5 to prove generalized versions of Freedman and Skora’s theorem.

Figure 9. A Bing double of the Hopf link yields a Brunnian link. (The figure on the right is, in fact, a less
conventional picture of the Borromean rings.)
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Section 6 gives an example of a Brunnian link in R4 in order to confirm existence of
such links. Finally, we close with some open questions.

3. DEFINITIONS. We turn to some standard definitions. Our setting will often be
Rn , Euclidean n-space with its traditional notion of distance, call it d. The unit n-ball
B̂n in Rn is all points of distance less than or equal to one from the origin (thus B̂1 is
an interval, B̂2 is a disk, and so on). The unit n-sphere Ŝn in Rn+1 is the boundary of
B̂n+1 (thus, Ŝ1 is the unit circle in R2, Ŝ2 is the unit sphere in R3, etc.).

We will follow the topological convention of having very flexible definitions of
spheres and balls. Any subset of Rn that is homeomorphic to the unit k-sphere is called
a k-sphere (or Sk). Similarly, any subset of Rn that is homeomorphic to the unit k-ball
in Rk is called a k-ball (or Bk). Thus a cube is actually considered a sphere even
though it is not round. Note that we differentiate the special case of the unit n-ball (unit
n-sphere) from the more general case of a topological n-ball (topological n-sphere) by
using the notation B̂n instead of Bn (Ŝn versus Sn).

Once we accept the topological notion that not all spheres are round, we would
like to be able to specify the special case of a sphere that actually is round and have
the definition match our intuitive notion of what a round sphere must be. Obviously
all points at distance d(> 0) from the origin in Rk+1 is a round k-sphere in Rk+1. In
general, a k-sphere Sk in Rn is a round k-sphere if there is a bijection f between Sk and
the unit k-sphere Ŝk in Rk+1 that preserves distance up to multiplication by a constant
t (there exists a constant t > 0 such that for every pair of points x and y of Sk it is true
that d(x, y) = t d( f (x), f (y))). This indeed matches one’s intuitive notion of what a
round sphere should be. For instance, the ellipse in R2 with equation

x2
1

4
+ x2

2

9
= 1

is a 1-sphere (or circle), but it is not a round 1-sphere (round circle).
A subset K of Rn is a knot in Rn if K is homeomorphic to Sk for some k(≥ 1). By a

link in Rn is meant a subset L of Rn that is homeomorphic to a disjoint union of finitely
many knots (possibly of different dimensions). Knot theory is usually restricted to the
case where n = 3 and each knot is homeomorphic to Ŝ1.

A link L = F1 ∪ F2 ∪ · · · ∪ Fm in Rn is an unlink in Rn if for each i the knot Fi

bounds a ball Bi (of appropriate dimension) such that Bi ∩ Fj = ∅ ( j '= i). If n = 3
and we restrict to circles, we obtain the traditional definition of an unlink, where each
component bounds a disk disjoint from the other components. If a link L in Rn of
m(≥ 3) components is not an unlink (in Rn), yet every proper sublink is an unlink (in
Rn), we call L a Brunnian link. If a link L of m components has no sublink of k or
more components that is an unlink in Rn , but every sublink of fewer than k components
is an unlink in Rn , we christen L an (m,k)-Brunnian link.

Two knots are said to be equivalent if one can be stretched through space to look
like the other in a nice continuous manner. The technical term for this stretching is
an ambient isotopy. People looking into knot theory for the first time often expect
homotopy to capture the notion of equivalence, but it turns out this is not a strong
enough equivalence. All knotted circles in R3, for example, are homotopic to each
other. The next logical attempt is to define isotopy. Let ht : X → Y (0 ≤ t ≤ 1) be
a homotopy with h0(X) = X0 and h1(X) = X1. Then {ht} is an isotopy from X0 to
X1 if each ht is a homeomorphism from X onto its image, in which case X0 and X1

are isotopic. Surprisingly this is still not quite a strong enough definition. Every knot
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(including the trefoil pictured in Figure 3) is actually isotopic to the unknot! One can
imagine h1 mapping S1 to the trefoil, with the knotted portion of the trefoil sitting
inside a ball of radius one about the origin and only an unknotted arc escaping the ball.
As t drops from 1 to 0 we shrink the knotted portion of the trefoil by tightening the
knotted arc so that at time t this portion is contained in a ball of radius t around the
origin. At time 0 the result must be an unknot. (We can envision such an isotopy by
picturing a small knot tied in a necklace, where we keep pulling the knot tighter and
tighter shrinking the knotted portion of the necklace down as t drops from 1 to 0.)

We address this final issue by requiring the homotopy to be a isotopy of both the
knot and the space containing it. More formally, let ht : Y → Y be a homotopy, let X
be a subset of Y , and let h0(X) = X0 and h1(X) = X1. Then {ht} is an ambient isotopy
from X1 to X2 if each ht is a homeomorphism from Y onto itself. In this situation X0

and X1 are ambient isotopic. When topologists talk about an isotopy between two
knots, they are almost always referring to an ambient isotopy. The same will hold true
in this paper. If there is an ambient isotopy between knots k0 and k1 they are considered
to be two different embeddings of some S p, but the same knot.

4. INTERSECTION OF FLAT BALLS. For the proofs that follow, it will often be
easiest to think of the link in Ŝn instead of Rn . It is easy to get from one to the other
using a conformal mapping between Ŝn minus a point and Rn (such as stereographic
projection) that preserves all of the crucial properties of the link in which we are inter-
ested.

We now establish two lemmas that are necessary for the proof of Theorem 5.1.
Assume that L = F1 ∪ F2 ∪ · · · ∪ Fk is a Brunnian link in Ŝn−1 made of round spheres.
We examine what would happen if L contained two round 2-spheres, say F1 and F2.
The other cases are analogous.

Let X1 and X2 be three-dimensional Euclidean planes in Rn (which in turn con-
tains Ŝn−1) such that X1 ∩ Ŝn−1 = F1 and X2 ∩ Ŝn−1 = F2. Let D1 = X1 ∩ B̂n and
D2 = X2 ∩ B̂n . Then D1 is a 3-ball in Rn bounded by F1, and D2 is a 3-ball bounded
by F2.

Now X3 = X1 ∩ X2 is one of the following: (1) the null set, (2) a point, (3) a line
(a flat copy of R1), or (4) a two-dimensional plane (a copy of R2). This implies that
D3 = D1 ∩ D2 is either (1) the null set, (2) a point, (3) an interval, or (4) a disk.
The final two options are, of course, impossible, since D3 ⊂ D1 ∩ D2 and ∂ D3 ⊂
∂ D1 ∩ ∂ D2 = F1 ∩ F2 = ∅. Thus the intersection of D1 and D2 can have no boundary
and must be either the null set or a point.

Since F1 and F2 are 2-spheres bounding 3-balls D1 and D2, we may assume that
if D3 = D1 ∩ D2 is a point, then n = 6. To understand why this is true, we observe
that this is analogous to the way two straight lines (which are one-dimensional sets)
can intersect in Rn (an n-dimensional space). Obviously in R1 two ostensibly different
lines actually coincide. In R2 if two nominally different lines overlap in every point,
then it is easy to create an isotopy of the second line that pushes it off of the first line,
leaving them disjoint, but moving each point on the second line an arbitrarily small
distance. A specific example of this is that, given two copies of the line y = 0, we can
push one copy up to the line y = ε/2, leaving the two lines disjoint but not moving
any point on the new line more than distance ε. On the other hand, if the two lines
in R2 intersect in only one point, as the x- and y-axes do, any isotopy that makes the
lines disjoint will have to move points arbitrarily large distances. In Rn with n ≥ 3,
however, every pair of lines can be made disjoint by means of an isotopy that displaces
no point more than ε, for any prescribed ε (> 0). For example, if our first line were
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the x-axis and our second line the y-axis, we could take an isotopy of the y-axis that
moves each point (0, y, 0) to (ε/2, y, ε/2). The lines end up disjoint, yet no point of
either line is moved more than ε. We see that for two lines to intersect in a point in
Rn in such a way that the intersection cannot be eliminated via a small isotopy n must
equal 2. We are looking at R1 and R1 in R2. The intersection is interesting (neither
trivial nor the entire line) in this case because the dimensions of the spaces involved
add up perfectly: 1 + 1 = 2. A plane will intersect a line in one point that cannot be
removed by small isotopies in R3, but not R2, R4, . . . since 2 + 1 = 3.

We will be intersecting two 3-balls and examining when they might intersect in a
point that cannot be removed via a small isotopy. Since 3-balls are three-dimensional,
the principle just discussed implies that this can happen only in R6 and not in Rn for
n '= 6. If two surfaces intersect minimally with respect to isotopy, we say that they are
in general position. Thus the x-axis and y-axis are in general position in R2, but not
in R3.

Lemma 4.1. If F1 and F2 bound 3-balls D1 and D2 that are in general position in R6

and if X3 = D1 ∩ D2 is a point, then F1 ∪ F2 is not an unlink.

The easiest proof we could find was suggested by Genevieve Walsh. It shows that
in this context there is an isotopy of Ŝ5 that does not introduce any intersections and
takes F1 and F2 to linked great spheres.

Proof. We want to reduce to the case where X1 and X2 intersect at the origin. Assume
that they do not. Let S5

t be the round 5-sphere of radius t centered at the origin in R6,
let B6

t be the ball bounded by S5
t in R6, let Fi (t) = Xi ∩ S5

t , and let Di (t) = Xi ∩ B6
t .

We observe the changes in the configuration as t grows from 1 to ∞.
If we rescale the B6

t to unit balls (and thus the S5
t to unit spheres and F1(t) ∪ F2(t)

to a new link in the unit sphere), this yields an isotopy of F1 ∪ F2 through S5. As the
isotopy progresses the intersection of the planes containing the spheres moves toward
the origin. In the limit it reaches the origin (this is a direct result of the rescaling: since
B6

t is shrunk by a factor of t , all distances, including the distance from D1(t) ∩ D2(t)
to the origin, are also shrunk by a factor of t). This means that, as t approaches ∞, the
link components converge to great spheres bounding flat balls in B6 that intersect at
the origin. In this case the two spheres constitute a simple generalization of the Hopf
link, so are indeed linked.

The foregoing proof works for links composed of 2-spheres, but the argument for
other dimensions is completely analogous. Thus, we arrive at the following result:

Lemma 4.2. If Fi and Fj are not pairwise linked, then Di ∩ D j = ∅ (the flat balls
that Fi and Fj bound are disjoint).

5. BRUNNIAN SPHERES. With the lemmas from section 4 in hand and with the
aid of the Freedman and Skora techniques, Theorem 2.1 becomes fairly easy to gener-
alize to higher dimensions (the proof of Theorem 2.2, by contrast, requires completely
different methods).

Theorem 5.1. If L is a Brunnian link in Rn, then L cannot be constructed exclusively
of round components.

Theorem 5.1 is a direct consequence of the following result:
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Theorem 5.2. Any link in Ŝn (or Rn) of round spheres with at least three components
and all components pairwise unlinked is the unlink.

Proof. Let L = F1 ∪ F2 ∪ · · · ∪ Fm be any link in Ŝn with all components pairwise un-
linked and with Fi represented by a round vi -sphere in Ŝn . Consider Sn as the boundary
of ˆBn+1, the unit (n + 1)-ball in Rn+1, as in Lemma 4.2. As in that case, Fi bounds a
ball Di = Xi ∩ Bn+1 (the ball has dimension one higher than Fi ). By Lemma 4.2 we
may assume that Di ∩ D j = ∅ when i '= j .

As earlier, let Sn
t signify the round sphere of radius t centered at the origin in Rn+1,

let Bn+1
t be the ball bounded by Sn

t in Rn+1, and let Fi (t) = Xi ∩ Sn
t . We can assume

that none of the Di contains the origin (if not, we perturb the corresponding knot
slightly so that this is true).

This time we take the limit as t goes from 1 to 0. As t goes to 0, each Fi (t) shrinks
to a point and then disappears when Di becomes tangent to Sn

t . Rescaling the Sn
t to

unit spheres yields an isotopy of the generalized link in Sn that keeps the components
disjoint but shrinks each component to a point, showing we have a generalized unlink.
(We focus on Sn

t , but rescale at each t so that Sn
t is a unit sphere, so it is as if Sn is fixed

and the knots in Rn+1 move instead of the other way around.)

Corollary 5.3. No (m, k)-Brunnian link in Rn can be constructed from round spheres
if k > 2.

Proof. Let L be an (m, k)-Brunnian link in Rn , and consider a k-component sublink
L ′ of L . We know that L ′ is not an unlink by the definition of an (m, k)-Brunnian link
in Rn . Also by the definition of (m, k)-Brunnian links, every sublink of L ′ is an unlink
in Rn . Thus L ′ is a Brunnian link in Rn and cannot be built out of round spheres. Since
L ′ is contained in L , L clearly cannot be constructed from round spheres either. Note
that, as with all results in this paper, if we set n = 3 Corollary 5.3 holds true in the
traditional setting of Debrunner’s original generalization of Brunnian links.

6. A BRUNNIAN LINK IN R4. In this section we give an example to show that
Brunnian links in Rn (n > 3) do exist. Let #ω project R4 onto R3 via the map
#ω((x, y, z, w)) = (x, y, z). Take L = F1 ∪ F2 ∪ k, where F1 and F2 are two-spheres
in R4 lying in the three-plane X defined by the equation w = 0 and k is a knot con-
taining the points p1, p2, . . . p8 with the property that pi lies in the three-plane given
by w = (−1)i (Figure 10 shows #ω(L)). Note that

#ω(k) ∩ #ω(F1) = #ω{p1, p2, p3, p4}

p1

p2

p4

p3

p5

p7

p6

p8

Figure 10. The projection of a Brunnian link in R4 into R3 by #ω
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and

#ω(k) ∩ #ω(F2) = #ω{p5, p6, p7, p8}.

Let si j be the component of k − {pi , p j } that intersects F1 ∪ F2 the fewest times when
both are projected into R3 (for example, #ω(s12) is contained in the ball bounded by
#ω(F1)).

We assert the following:

Theorem 6.1. L is a Brunnian link.

Proof. Note that if k is removed, then F1 and F2 are not linked. To see that if F1 is
deleted, F2 and k are not linked we want to show that they can be deformed through
space and pulled apart. Because it is hard to picture R4 it may be easier to perform the
deformation in R4 but then watch what happens after projecting to R3 with #ω. If we
can figure out how to deform them through R4 so that the projection becomes sepa-
rated, but throughout the deformation any time #ω(k) intersects #ω(F2) the preimage
on k has a different w value from the preimage on F2, then we know that the defor-
mation has kept the components disjoint. This is true because, if the two components
intersect, each has a point with identical x-, y-, z-, and w-coordinates. The intersec-
tions in the projection are the only points with the same x-, y-, and z-coordinates and
thus are the only potential intersections back in R4. The preimages do intersect if and
only if the w-coordinates are also the same. If we tried to pull s67, for example, directly
out of F2 we would run into trouble when the point on the arc with w = 0 hit F2. If
there were no point on s67 with w = 0, then it would be easy to pull it out without
introducing an intersection in R4.

On the other hand, since F1 was deleted, k can be deformed through R4 in such a
way that every point of s57 has w = −1, #ω(k) never changes, and the rest of k is kept
fixed. Thus the trajectory of k is kept disjoint from F2 throughout the process. This is
easy to do because both endpoints of s57 have w = −1 and #ω(s57) intersects F2 only
in its endpoints (the w-component is homeomorphic to a subset of R, and since R is
simply connected, it is easy to alter just the w-component until it is constant).

Similarly, s68 can be deformed through space to have w = 1. Now these two arcs
no longer have points with w = 0 on them and thus can be pulled to the inside of
F2, so that #ω(k) is entirely contained inside of #ω(F2). Now leaving the x-, y-, and
z-components fixed (and thus #ω(k) disjoint from #ω(F2)), we can deform k through
space so that all the points on k have w = 1, again while leaving the x-, y-, and z-
components of each point fixed. By the previous observations, once every point on k
has a nonzero w-coordinate, k can clearly be deformed through space so that #ω(k)
is entirely outside of #ω(F2), showing that this is indeed an unlink. The same type of
argument can be made for F1 and k.

Now that we have shown that every sublink of L is an unlink we need demonstrate
only that L is not the unlink and we will know that it is indeed Brunnian. To prove this
we look at the simpler link M = k1 ∪ k2 ∪ k ′ in R3 pictured in Figure 11, for which
our intuition is better but the argument is analogous. Note that M is just another pre-
sentation of the Borromean rings, so we are actually proving that the Borromean Rings
are not an unlink and thus are indeed a Brunnian link, a fact that we have previously
asserted but not proved.

Note that, as with L , when we delete k, k1, or k2 from M we get an unlink. In
general, a circle that is a component of an unlink must bound a disk in the link com-
plement. It therefore must represent a trivial element in the fundamental group of the
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Figure 11. The Borromean Rings, represented as M = k1 ∪ k2 ∪ k ′ are pictured on top. The second picture
shows k1, k2, and the generators of π1(R3 − (k1 ∪ k2)).

Figure 12. The images under #ω of F1, F2, and the generators of π1(R4 − (F1 ∪ F2)).

complement of the other link components. For M we will show that k ′ is not trivial
in the fundamental group of R3 − (k1 ∪ k2), π1(R3 − (k1 ∪ k2)). This is a free group
on two generators. The generators, which we may call a and b, are represented by the
two circles that make up the figure eight in Figure 11. Note that the fundamental group
of R3 − ki (or, for that matter, of any simply connected subset of R3 minus any un-
knotted circle in its interior) is a free group on one generator. The Seifert/Van Kampen
theorem ensures that if a space can be decomposed into two subspaces that intersect
in a connected, simply connected subset, then the fundamental group of the original
space is the free product of the fundamental groups of the smaller spaces. Now k ′ is
homotopic in R3 − (k1 ∪ k2) to aba−1b−1, the commutator of two generators of the
fundamental group. Thus, k ′ is not homotopic to the trivial element in the fundamental
group of R3 − (k1 ∪ k2), and M is not an unlink. We may make a totally analagous
argument for L . The fundamental group of R4 − (F1 ∪ F2) is again the free group on
two generators, generated by two circles forming a figure eight. We can see the images
under #ω of the generators of the fundamental group of R4 − (F1 ∪ F2) in Figure 12.
Each of the two loops intersects a respective sphere in two points, but in the preimage
of the figure eight, for each loop one of these two points has positive w-coordinate and
the other has negative w-coordinate. Again k represents the commutator element of the
fundamental group, a free group on two generators. As such, it is not trivial, proving
that L is not the unlink.

February 2008] BRUNNIAN SPHERES 123



7. OPEN QUESTIONS. We end with a few open questions.

Question 7.1. Is there a Brunnian link other than the Borromean rings that can be
formed out of convex curves?

The combinatorics in such problems become much more complicated as the number
of components goes up. Bob Davis has proved that the answer is no for n = 5, but a
new strategy seems necessary for large n.

Question 7.2. If n ≥ 6, how many n-component Brunnian links can be formed out of
planar curves?

As we observed in the introduction, for each n the answer is at least one, but perhaps
all such examples arise from the relatively small family of Brunnian links that are
formed by iterated doubles of the Hopf link.

Question 7.3. Is there a generalized Brunnian link other than the Borromean rings
that can be formed out of convex embeddings of spheres in Rn?

This question appears to be wide open: perhaps there is a good example of such a
link, or perhaps no such link exists.
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1. H. Brunn, Über Verkettung, Sitzungsber. Bayerische Akad. Wiss., Math. Phys. Klasse 22 (1892) 77–99.
2. R. M. Davis, Brunnian Links of Five Components, Master’s thesis, Wake Forest University, Winston-

Salem, NC. 2005.
3. H. E. Debrunner, Links of Brunnian type, Duke Math. J. 28 (1961) 17–23.
4. M. H. Freedman and R. K. Skora, Strange actions of groups on spheres, J. Differential Geom. 25 (1987)

75–98.
5. H. N. Howards, Convex Brunnian links, J. Knot Theory Ramifications 15 (2006) 1131–1140.
6. B. Lindstrom and H. O. Zetterstrom, Borromean circles are impossible, this MONTHLY 98 (1991) 340–341
7. D. E. Penney, Generalized Brunnian links, Duke Math J. 36 (1969) 31–32.
8. T. Yanagawa, Brunnian systems of 2-spheres in 4-space, Osaka J. Math. 1 (1964) 127–132.

HUGH HOWARDS received his B.A. at Williams College and received his Ph.D. (1997) at the University
of California, San Diego, where his advisor was Mike Freedman. He is a Sterge Faculty Fellow and associate
professor at Wake Forest University. Since coming to Wake Forest in 1997, he has won both the Reid-Doyle
prize for the top young teacher on campus and the Student Government award for the top teacher on campus.

124 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 115


