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ABSTRACT

We prove that the Borromean Rings are the only Brunnian link of 3 or 4 components
that can be built out of convex curves.
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1. Introduction

Definition 1.1. A Brunnian link is a link L = k1∪k2∪· · ·∪kn of n ≥ 3 components
such that L is not an unlink, but every proper sublink of L is an unlink.

The most famous example of a Brunnian link is the Borromean rings, but there
are an infinite number of different Brunnian links for any given n.

In this paper we bring to light a theorem of Freedman and Skora [2] about
Brunnian Links and then generalize several cases of the theorem. In 1987 Freedman
and Skora proved the following theorem in their paper [2].

Theorem 1.2 [2]. No Brunnian Link can be built out of round circles.

This is in some sense a surprising result since Fig. 1 appears to consist of three
circles! The seeming contradiction is resolved by the realization that although the
projection is made up of three circles, the link itself is not made up of circles. The
projection yields an optical illusion. Viewing it from a different perspective would
reveal that the “circles” must be bent. (This is a similar illusion to the one that
allows the knot 51 to appear to be built out of five sticks even though, only the
unknot can be built out of fewer than six sticks.)

The special case of the Borromean rings was reproven in the early 90’s by
Lindstrom and Zetterstrom in [3], and independently (but unpublished) in the

1131



December 13, 2006 13:36 WSPC/134-JKTR 00502

1132 H. N. Howards

Fig. 1. The Borromean rings pictured here appear to be made out of circles.

simplest proof yet by Agol in 1993. Lindstrom and Zetterstrom apparently did not
know about Freedman and Skora’s proof when they published their more compli-
cated and less general proof four years later.

Note that we can certainly form the Borromean rings out of two circles and an
ellipse. For example in the xy plane take L1 = k1 ∪k2∪k3, consisting of the ellipse,
k1, x2

4 + y2

25 = 1 In the xz plane take the circle k2, x2 + z2 = 9, and in the yz plane
take the circle k3, y2 + z2 = 16.

This paper generalizes some cases of Theorem 1.2 in the following way.
We ask, what happens if instead of requiring the components of the link to be

round circles, we only require them to bound convex planar regions (we will call
such a curve convex), and answer:

Theorem 1.3. The Borromean rings are the unique Brunnian links of three or
four components that can be formed out of convex curves.

We now make a few observations about Brunnian links. Note that for each
n, n ≥ 3 there are an infinite number of Brunnian links with n components. One
method of construction is to take the infinite family of non-trivial links made up
of two unknotted components and take a Bing double of one of the components
(see Fig. 2). This yields an infinite family of three component Brunnian links. If we
double one of the components of the new links, we get an infinite family of four com-
ponent Brunnian links. We can, of course, continue this process as long as we like.

It is obviously also true that any n component Brunnian link can be made out
of (n − 1) circles and one more component, but by Theorem 1.2 this component
will never be a circle. Also we observe the following lemma.

Lemma 1.4. Although there are no convex planar Brunnian links of four
components, for any n ≥ 3 we can construct a Brunnian link of n components in
which all the components are planar and all but one of the components are circles.
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Fig. 2. The Bing double of the Hopf link yields a Brunnian link with planar components.

Proof. Build the Hopf link out of two circles and take the Bing double of one of
the components, replacing it with one small circle and one planar curve as in Fig. 2.
To get an n component link iterate this process n−3 more times doubling the single
component that is not a circle each time.

2. Convex Brunnian Links

We now turn to the proof of Theorem 1.3.

Theorem 1.3. The Borromean rings are the unique Brunnian links of three or four
components that can be formed out of convex curves.

Proof. Note that a planar closed curve in R3 bounds a uniquely determined flat
disk. In general these disks can be disjoint, can intersect in a single ribbon sin-
gularity, or a single clasp singularity. Figure 3 shows each of the latter type of
singularities. Figure 4 shows a picture of each of the disks drawn abstractly with
the intersection with the other disk recorded on it.

Fig. 3. A ribbon singularity and a clasp singularity.
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Fig. 4. An abstract picture of a ribbon and a clasp singularity. The first disk corresponds to the
interior arc from the ribbon singularity, the second, the exterior arc. The third and fourth disks
have the clasp singularities drawn.

In our context, because the disks are planar and convex, if we see a clasp singu-
larity, the two knots must form a Hopf link and have non-trivial linking number and
thus are not part of a Brunnian link or any link with pairwise linking numbers 0.
Thus we may assume that we only see ribbon singularities. Note that every time
we have a ribbon singularity on one disk we see an exterior arc that has both end
points on the knot and is properly embedded on the disk, and on the other we see
an interior arc, that is totally contained on the interior of the disk, including the
end points, just as in Fig. 4.

Recall L1 and L2, the two links from the start of this section. Note that in
L1 each disk contains one arc of each type, and in L2, the first disk contains two
exterior arcs, the second has one exterior arc and one interior arc, and the final disk
contains two interior arcs.

In both cases we say we have a triple point singularity since all three disks
intersect in a single point. We say the diagram of intersections on one of the disks
has a “t” in it if it has two edges intersecting in a triple point.

2.1. The case of 3 convex components

Let L = s1 ∪ s2 ∪ s3 be a link consisting of three convex, planar curves, bounding
planar disks ∆1, ∆2, and ∆3 respectively. Assume we do not have the Borromean
rings. We would like to prove that L is the unlink. If there are no triple points in
the intersection, then each disk has one or two ribbon singularities on it. There are
three ways to pair up the disks (and thus at most three intersections) so there are
at most three interior arcs and at most three exterior arcs total on the three disks.

Lemma 2.1. No component of a Brunnian link can bound a disk disjoint from the
other components of the link, and thus no disk can have only exterior arcs for its
intersection pattern.

Proof. If one disk has only exterior arcs on it, then its boundary is a knot that
bounds a disk that is disjoint from the other knots. The boundary of a small regular
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neighborhood of the disk is a sphere that separates one component of the link from
the rest and thus we have a split link and not a Brunnian link.

Possible intersection patterns for the disks in the four component case are
depicted in Figs. 5–8. In each figure we draw ∆1, ∆2, . . . , ∆n, with ∆1 in the
top left corner, ∆2 in the top row just to the right of ∆1 on the left and ∆(i+1)

always directly to the right of ∆i. Then the intersections are recorded by arcs and
labeled with variables. In Fig. 8, for example, the intersection of ∆1 with ∆2 is the
arc labeled a. Two disks intersect in the picture if and only if there is an arc on
each with the same label. To distinguish between the image of a on ∆1 and on ∆2

we will call the former a1 and the later a2. The same convention will be used for
all intersections — the subscript of the arc on Di will be i, and a variable such as
a will appear on exactly two disks — the two that intersect in the corresponding
arc. Note also that a triple point can be identified by giving the three arcs that
meet at it, such as a, b, d which is the triple point from ∆1, ∆2, and ∆3 in Fig. 8.
On ∆2 that triple point is represented by the intersection of a2 and d2, on ∆1 it
is represented by the intersection of a1 and b1, and then on ∆3 by the remaining
possible pairing of a, b, and d (b3 and d3).

We say an exterior arc ai for a disk ∆i is “outermost” on ∆i if one of the
components of D − ai contains no exterior arcs or interior arcs. For example, in
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Fig. 5. Diagrams for one triple point. ∆1 is on the left ∆2 to its right, ∆3 the third disk, and
∆4 is on the right.

a

b

c

a

d e

b
d

f

c

e f

Fig. 6. Diagrams for two triple points.
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Fig. 7. Diagrams for three triple points.
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Fig. 8. Diagrams for four triple points.

Fig. 5 the arc e2 on ∆2 is outermost as is the arc f4 on ∆4. None of the other arcs
in that picture are outermost (an arc containing a triple point is never considered
to be outermost).

For the three component case, let us first examine the case where there are no
triple points of intersection. If not all of the disks intersect each other then one
disk must contain only exterior arcs, contradicting Lemma 2.1. Thus all disks must
intersect each other and since by Lemma 2.1 no disk has only exterior arcs on it,
each disk has one interior arc on it, and one exterior arc on it, and thus all exterior
arcs are outermost arcs. Without loss of generality, assume that ∆1 contains an
outermost exterior arc corresponding to its intersection with ∆2. Let S be a sphere
that is the boundary of a small regular neighborhood of ∆1. Since ∆1 ∩ ∆2 was
an outermost arc on ∆1, S − (S ∩ ∆2) has a component T that is a disk disjoint
from all of the ∆i. We may alter ∆2 by deleting the sub-disk cut off by S ∩∆2 and
replacing it with T to get a new disk ∆′

2 that is now disjoint from ∆1, decreasing
the total number of interior arcs by one and the total number of exterior arcs by
one, too. We will call this process, “pushing” ∆2 along ∆1 to decrease the number
of intersections. Note that this means s2 bounds a disk ∆′

2 with no interior arcs on
it, and by Lemma 2.1, we have a split link and thus cannot have a Brunnian link!

Thus to have a Brunnian link of three convex planar components we must see
a triple point. Since there are three exterior arcs and three interior arcs, there are
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two options now. The first case is that on one disk there are two exterior arcs (and
no interior arcs), on one disk there is one of each, and on the final disk there are
two interior arcs (and no exterior arcs). In this case, the first disk shows that the
link is not Brunnian by Lemma 2.1. The second case is that on each disk the triple
point is part of one exterior arc and one interior arc. In this case, the disks lie in
three planes intersecting in a point (since there is a triple point and the three disks
are planar). Without loss of generality, we can assume that ∆1 lies in the xy plane,
∆2 lies in the xz plane, and ∆3 lies in the yz plane (in reality, the planes may not
be perpendicular, but that will have no effect on the crucial topological information
in this argument). We can assume that ∆1 ∩ ∆2 is an exterior arc on ∆1 and an
interior arc on ∆2.

∆1 intersects the yz plane in one arc, and ∆2 intersects the plane in another
arc, forming a t. Without loss of generality, let ∆1 ∩ ∆3 be an exterior arc on ∆3

and thus ∆2 ∩ ∆3 must be an interior arc on ∆3. s3 = ∂∆3 is a convex curve in
the xz plane that contains the end points of ∆3 ∩∆1 but does not intersect the arc
∆3 ∩ ∆2 at all (since that is an interior arc on ∆3, and thus is contained on the
interior of ∆3 missing its boundary). Up to isotopy, there is a unique way to choose
a convex curve in the plane with this property. This means that there is a unique
way up to isotopy to choose the link components, and, therefore,

Lemma 2.2. The Borromean rings, are the unique link with three convex planar
components, bounding planar disks, with one triple point in their intersection and
one exterior arc and one interior arc on each of the three disks.

This completes the proof on three components, because we have seen that if
there are no triple points we have the unlink, if there is a triple point then we
either have the Borromean rings (if each disk has one exterior arc and one interior
arc) or a split link.

2.2. The case of 4 convex components

Let L = s1 ∪ s2 ∪ s3 ∪ s4 be a link where each si is a convex planar curve bounding
a planar disk ∆i.

The first case is that there are no triple points of intersection for the disks.
This means that there are at most six exterior arcs and six interior arcs on the
disks (since there are

(
4
2

)
ways to pair up these disks and form an intersection).

Assume the disks are chosen with the smallest number of intersections possible.
For all four disks to fail to have an outermost exterior arc on them, they must
each have at least two interior arcs. Obviously this cannot be the case since there
are a total of six interior arcs, not eight. Use one of the outermost exterior arcs to
decrease the total number of intersections. This is a contradiction since we assumed
we chose the disks to have a minimal number of intersections. Thus we must have
no intersections, proving we have the unlink.
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The second case is that there is exactly one triple point of intersection. This
means that three of the disks, say ∆1, ∆2, and ∆3 have a triple point on them,
and the fourth ∆4 does not. If ∆1 ∩ ∆4 is an exterior arc on ∆1 then it must be
outermost on ∆1 (the “t” must fall on one side of the arc or the other and that
takes care of all of the other intersections) and we can get rid of the intersection.
The same is, of course, true for ∆2 and ∆3. Thus, we can assume that all of the
intersections are exterior arcs on ∆4 since we can get rid of all interior arcs on it.
This, however implies we have a split link by Lemma 2.1.

The third case is that we have exactly two triple points. Since a disk can only have
3 intersection arcs on it, we cannot see two “t’s” on one disk. We must, therefore,
on one of the disks, see one edge that has two other edges cross it forming an “H”
intersection pattern. The edge that crosses the other two is part of two disks, so we
must see an “H” on two disks and a “t” on two disks. Let ∆1 and ∆2 be the two
disks containing the “H ′s”. Call the arc that intersects two other arcs a1 on ∆1 and
a2 on ∆2. ∆3 and ∆4, the two disks with the “t’s” may intersect each other, but if
so the exterior arc is outermost on the disk that contains it and so the intersection
can be eliminated. Without loss of generality let a1 be the exterior arc and a2 be
the interior arc.

∆1 must contain an interior arc or we have a split link, so we may assume that
that arc is b1, the intersection with ∆3. If we have a triple point that corresponds to
one exterior arc and one interior arc on each disk, by Lemma 2.2 the link contains
the Borromean Rings as a sublink and thus is not Brunnian itself. Thus, since a1

is an exterior arc and b1 is an interior arc, a2 and d2 are both interior arcs and b3

and d3 are both exterior arcs.
We now notice that both of the arcs on ∆3 are exterior arcs (and we already

determined there are only two arcs of intersection on ∆3 since f = ∆3 ∩∆4 can be
removed), so by Lemma 2.1, we have a split link!

The fourth case is that we have exactly three triple points. Note that each triple
point appears on exactly three disks (the three that intersect to form it). If one
disk has no triple points on it, then there can be only a total of at most one
triple point. If one disk has exactly one triple point on it, then there can be at
most two triple points total again showing we are actually in a previous case,
not this one. Every disk, therefore, must have two or three triple points, since
it is impossible for a disk to have more than three triple points when they are
created by intersections of three (straight) arcs. Since each triple point appears on
three disks, giving us a total of nine points to distribute on the disks, we must
have one disk with three triple points and three disks with two triple points on
them, as in Fig. 7. It turns out that without loss of generality, we can determine
the exterior arcs and interior arcs on the disks to match those in the figure as
follows:

1. ∆1 must have an interior arc, so without loss of generality, we may assume a1 is
an interior arc and a2 on ∆2 is an exterior arc.
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2. Not all arcs on ∆2 can be exterior arcs, so we can assume d2 is an interior arc
on ∆2 and d3 is an exterior arc on ∆3.

3. So that the triple point from a, b, d does not result in the Borromean rings, b3

must be an exterior arc, and b1 an interior arc.
4. Now e3 must be a interior arc or all the arcs on ∆3 are exterior arcs and thus

e4 is an exterior arc.
5. So that the triple point from e, b, c does not result in the Borromean rings, c4

must be an exterior arc, and c1 must be an interior arc.
6. Finally, f4 must be an interior arc or D4 has only exterior arcs.

This implies that Fig. 7 is the only possible case for three triple points. Note,
though, that ∆1 only contains interior arcs. This, however, is a contradiction since
if we call the plane containing ∆1, P , then P −∆1 is disjoint from all of the disks.
This, however, implies s1 bounds a disk disjoint from the other knots and we have
a split link (this is, of course, obvious in S3 as the one point compactification of
R3, but the compactification, of course, has no affect on whether the link is split
or not).

The final case is we have 4 triple points. This means we have 3 triple points on
each disk. No disk can have three exterior arcs, so the first case is we see three disks
with two exterior arcs and one interior arc, and one disk with three interior arcs,
but this implies a split link just as it did in the previous case. The other possible
case is we have two disks with two exterior arcs and one interior arc, and two disks
with two interior arcs and one exterior arc, such as Fig. 8. Let ∆1 and ∆2 be the
former disks and ∆3 and ∆4 be the latter.

1. We may assume that a1 is an interior arc since the interior arc on ∆1 or ∆2 had
to result from their intersection with each other, thus a2 is an exterior arc. This
also mandates that b1 and c1 are exterior arcs and b3 and c4 are interior arcs
since ∆1 has only one interior arc on it.

2. This means that either d2 or e2 must be the interior arc on ∆2 and without loss
of generality we can assume that d2 is an interior arc and e2 an exterior arc (and
thus d3 is an exterior arc and e4 an interior arc).

3. Since ∆1 only had one interior arc, b1 and c1 are exterior arcs and thus b3 and
c4 are interior arcs.

4. Finally, f4 must be an exterior arc since ∆4 contains an exterior arc and this is
the only arc that is not labeled and thus f3 is an interior arc. components

The a, b, d intersection, however, violates the triple point intersection rule imply-
ing that ∆1, ∆2, and ∆3 form the Borromean rings, which shows this is not a
Brunnian link.

Thus, no matter how many triple points we have there is a contradiction and
we have not built a Brunnian link.
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3. Open Questions

We end with a few remaining open questions.

Question 3.1. Is there a Brunnian link other than the Borromean rings that can
be formed out of convex curves?

The combinatorics get much more complicated as the number of components
goes up. Davis [1] builds on this paper in his master’s thesis at Wake Forest
University to confirm that there are no convex Brunnian links for n = 5. It is
possible (but certianly not obvious) that the same techniques may work for n = 6,
but a new strategy seems necessary for large enough n.

Question 3.2. For a fixed n ≥ 3 how many n component Brunnian links can be
formed out of planar curves

As we observed in the introduction, for each n the answer is at least one, but
perhaps all such examples are from the relatively small family of Brunnian links
that are formed by iterated doubles of the Hopf link.

Question 3.3. Is there a Brunnian link other than the Borromean rings with a
projection onto the plane such that the images of the components are all convex
(creating an optical illusion such as the circular Borromean rings projection)?
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