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Abstract. This paper proves that convex Brunnian links exist for every dimension
n ≥ 3 by constructing explicit examples. These examples are three-component links
which are higher-dimensional generalizations of the Borromean rings.

Figure 1. The Borromean Rings

1. Introduction

The link depicted in Figure 1 is known as the Borromean rings and appears to consist
of three round circles. This, however, was proven to be an optical illusion by Mike
Freedman and Richard Skora in [4], who showed that at least one component must
be noncircular. A different proof of this result was given by Bernt Lindström and
Hans-Olov Zetterström in [8]; it seems they were not aware of the earlier result.

Brunnian links were introduced over a hundred years ago by Hermann Brunn in his
1892 paper “Uber Verkettung” (“On Linking”) [1]. They have been generalized both
in R3 as well as in higher dimensions. Debrunner [3] and Penney [9] each looked
at generalizations of Brunnian links in R3 in 1961 and 1969 respectively. Takaaki
Yanagawa was the first to look at higher-dimensional Brunnian links such as the ones
we study in this paper back in 1964 when he constructed 2-spheres in R4 that formed
Brunnian links [10].
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Instead of linked circles in R3, one can consider linked spheres of various dimensions
in Rn. In [7] it is shown that no Brunnian link in Rn can ever be built out of round
spheres for any n ∈ Z+.

However, the Borromean rings can be built out of two circles and one ellipse that is
arbitrarily close to a circle by using the equations

K1 = {x21 + x22 = r21, x3 = 0}
K2 = {x22 + x23 = r22, x1 = 0}

K3 = { x21
(r3)2

+
x23

(r4)2
= 1, x3 = 0},

where r3 < r1 < r2 < r4, all arbitrarily close to each other.

In [6] it is proven that although there are an infinite number of Brunnian links of 3
components in R3 (or any number of components ≥ 3), the Borromean rings are the
only Brunnian link in dimension three of either 3 or 4 components that can be built
out of convex components. The result was extended to 5 components in [2].

The question of whether any Brunnian link in Rn (n ≥ 3) other than the Borromean
rings can be built out of convex components was asked in [7, 2]. The main result of
this answers that question in the affirmative:

Theorem 3.1. Consider the infinite family Li,n of three-component links given ex-
plicitly by (1); each consists of a round (n–2)-sphere, a round (n–i–1)-sphere and an
i-dimensional ellipsoid sitting in Rn (for 1 ≤ i ≤ n–2 and n ≥ 3). Each Li,n is a
convex Brunnian link.

As we will see, each of these links is a natural generalization of the Borromean rings.
Moreover, each can be constructed so the ellipsoid is arbitrarily close to being round.

This is organized as follows: the next section covers the background and relevant
definitions for higher-dimensional linking. The main portion of this is section 3,
which proves Theorem 3.1.

In section 4, we provide a second proof of Theorem 3.1 for the special case i = 1, in
which we explicitly realize the first component as an ellipse (an S1) and the other
two as round (n–2)-spheres. This second proof uses the fundamental group as its
main tool but does not extend to the general case. Section 5 concludes this with
questions and conjectures about other convex Brunnian links: do they exist? Do the
Borromean rings generalize to three (n–2)-spheres sitting in Rn?

2. Standard definitions

Recall that a knot is a subset of R3 or S3 that is homeomorphic to a circle (also
called a 1-sphere or S1). If the knot bounds an embedded disk it is called an unknot;
otherwise it is knotted.
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A link L is a collection of disjoint knots. A link L is an unlink of n components if it
consists of n unknots and if the components simultaneously bound disjoint embedded
disks.

A Brunnian link L is a link of n ≥ 3 components that is not an unlink, but every
proper sublink of L is an unlink. The Borromean rings form the most famous example
of a Brunnian link (Figure 1). Note that eliminating any one of the components yields
an unlink.

A subset K of Rn is a knot in Rn if K is homeomorphic to Sk for some k. By a link
in Rn is meant a subset L of Rn that is homeomorphic to a disjoint union of finitely
many knots (possibly of different dimensions). Knot theory is usually restricted to
the case where n = 3; each knot is homeomorphic to S1.

A link L = F1 ∪ F2 ∪ . . . Fm in Rn is an unlink in Rn if for each i the knot Fi bounds
a ball Bi (of appropriate dimension) such that Bi ∩ Fj = ∅ (i 6= j). If n = 3 and
we restrict to circles, we obtain the traditional definition of an unlink, where each
component bounds a disk disjoint from the other components. If a link L (in Rn) of
m(≥ 3) components is not an unlink (in Rn), yet every proper sublink is an unlink
(in Rn), we call L a Brunnian link in Rn.

We say a link L is a split link in Rn if there is an (n − 1)-sphere that is disjoint
from the link and separates Rn into two components, each containing at least one
component of the link. (The (n− 1)-sphere need not be round.)

A knot Sk is said to be convex if it bounds a ball Bk+1 which is convex.

A generalized Hopf link is any link of two components, one an Sj and the other an
Sn−(j+1) in Rn or Sn, each of which bounds a ball that intersects the other sphere
transversally in exactly one point. Examples include any link isotopic to the following
link in Rn: F1 = {(x1, x2, . . . xn) : x2i+1 + x2i+2 + · · ·+ x2n = 1, x1 = x2 = · · · = xi = 0}
and F2 = {(x1, x2, . . . xn) : x21 + x22 + · · · + x2i + (xn − 1)2 = 1, xi+1 = xi+2 = · · · =
xn−1 = 0}, where 1 ≤ i ≤ n− 2.

3. An infinite family of convex Brunnian links

In this section, we present our main result, the existence of an infinite family of
three-component convex Brunnian links in Rn. Define the family Li,n as

(1) Li,n = K1 ∪K2 ∪K3

K1 = {(x1, x2, . . . xn) : x21 + x22 + · · ·+ x2n−1 = 4, xn = 0}
K2 = {(x1, x2, . . . xn) : x2i+1 + x2i+2 + · · ·+ x2n = 9, x1 = x2 = · · · = xi = 0}

K3 = {(x1, x2, . . . xn) : x21 + x22 + · · ·+ x2i + x2
n

16
= 1, xi+1 = · · · = xn−1 = 0},

where n ≥ 3 and 1 ≤ i ≤ n− 2.

Theorem 3.1. Each Li,n is a convex Brunnian link.
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We know that L1,3 consists of two circles and an ellipse forming the Borromean rings,
a Brunnian link. In the general case it is clear that the components are convex. The
following lemma shows that all sublinks of Li,n are unlinks. We must show that no
Li,n is an unlink, which we accomplish via Lemmas 3.3-3.5.

Henceforth, we adopt the convention for specifying knots and balls that all omitted
coordinates are set equal to be zero.

Lemma 3.2. Every proper sublink of Li,n is an unlink.

Proof. The proper sublinks of Li,n are pairs of unknots. For each pair, we observe
that one knot bounds a ball disjoint from the other, and thus the pair forms a split
link and must be an unlink.

Explicitly, the round (n–1)-ball B1 = {x21 +x22 + · · ·+x2n−1 ≤ 4} ⊂ Rn bounded by K1

lies in the complement of the (n–i–1)-sphere K2. Similarly, K2 bounds a (round) ball
B2 disjoint from the i-dimensional ellipsoid K3, and K3 bounds an ellipsoidal ball B3

disjoint from K1. �

The next lemma, stated without proof, relays a standard fact about spheres.

Lemma 3.3. Let Sn ⊂ Rn+1 be a round sphere centered at the origin, and let V be a
linear subspace of Rn+1. Consider the great spheres X1 = V ∩Sn and X2 = V ⊥ ∩Sn.
Then, Sn −X1 deformation retracts onto X2.

In particular, if we delete an unknotted Sk−1 ⊂ Sn from Sn, the result deformation
retracts onto an Sn−k.

Next, we note that K3− (B1 ∩K3) is not connected, since the intersection (B1 ∩K3)
is exactly the equator xn = 0 of the i-dimensional ellipsoid K3. The two components
of K3− (B1 ∩K3) are the upper and lower open halves of K3. We use the upper half
for our next definition.

Let K ′3 be the i-dimensional subset of K3 ∪B1 formed by taking the open upper half
of the ellipsoid K3 and closing it at the bottom with the disk B1∩B3; in coordinates,

K ′3 =
{

(x1, x2, . . . xn) : x21 + x22 + · · ·+ x2i + x2
n

16
= 1, xn ≥ 0

}
∪
{

(x1, x2, . . . xn) : x21 + x22 + · · ·+ x2i ≤ 1, xn = 0
}
.

Lemma 3.4. K ′3 ∪K2 is a generalized Hopf link and is not a split link.

Proof. Figure 2 depicts this link for n = 3; notice that K ′3 orthogonally intersects B2

at the origin, so this a Hopf link. In arbitrary dimensions, the same phenomenon
occurs: K ′3 orthogonally intersects B2 in only one point, the origin, and we have a
generalized Hopf link.

(By letting B′3 be the portion of B3 with xn ≥ 0, i.e., the portion bounded by K ′3, we
also see that K2 orthogonally intersects B′3 in only one point, q+ = (0, 0, . . . , 0, 0, 3).)

Now we show the link is not split. Although K ′3 ∪ K2 lies in Rn, our argument is
more easily made in Sn. If we include Rn inside Rn+1 by fixing xn+1 = 0, then we
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Figure 2. Here is how the argument looks for L1,3 ⊂ R3. Ball B2 has
dimension n − i = 2; it forms the round disk bounded by K2 in the
x2x3-plane; the (i+1 = 2)-ball B′3 is the upper half-disk bounded by K ′3
in the x1x3-plane. Let p be the map via stereographic projection from
R3 to S3 ⊂ R4. Then we see that p(K2) = G2, p(K

′
3) = G′3, p

−1(G3) is
the x1-axis, and p−1(Σ) is the x1x3-plane. Note that q+ is ‘inside’ K ′3
in the x1x3-plane, whereas q− is ‘outside’.

may use stereographic projection p to lift Rn to the n-sphere Sn ⊂ Rn+1 of radius 3,
centered at the origin. (Usually the unit sphere is used for stereographic projection,
but in this case it is more convenient to use the radius of K2.) We will show the lift
of link K ′3 ∪K2 is not split.

Because K2 has radius 3 and is centered at the origin, it is fixed by the lift p. We
consider these subsets of Sn:

• G2, the great (n–i–1)-sphere p(K2)
• G3, the great i-sphere

{
x21 + x22 + · · ·+ x2i + x2n+1 = 9

}
in Sn complementary

to G2

• G′3, the lift p(K ′3), and
• Σ, the great (i+ 1)-sphere

{
x21 + x22 + · · ·+ x2i + x2n + x2n+1 = 9

}
We note that both G3 and G′3 are unknotted i-spheres contained in Σ ⊂ Sn; the
former inclusion is immediate while the latter follows since K ′3 lies in the (i + 1)-
dimensional subspace p−1(Σ). We observe that G2 ∩ Σ is a great 0-sphere consisting
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of two points q̃± = (0, 0, . . . , 0,±3, 0) which are disjoint from G3 ∪ G′3. Note that
q̃± = p(q±).

Claim: G′3 is isotopic to G3 in Σ−G2 (which implies they are isotopic in Sn −G2).

To prove the claim, it suffices to show both G3 and G′3 separate q̃+ from q̃− in Σ, i.e,
they can both be oriented to contain q̃+ on the inside and q̃− on the outside. This
follows immediately for G3 since it is a great i-sphere disjoint from antipodal points
q̃± in Σ.

Now we show G′3 separates q̃±. Recall that K ′3 bounds B′3, which contains q+ but not
q−. Also note that B′3 ⊂ p−1(Σ). This property is preserved under homeomorphism
p since p is a bijection and B′3 ⊂ p−1(Σ) and p(B′3) ⊂ Σ. The i-sphere G′3 bounds
p(B′3), which contains q̃+ but not q̃−. Thus G′3 separates q̃± and the claim holds.
Since G3 and G′3 are isotopic in Σ − G2, they are also isotopic in the larger space
Sn −G2 which contains Σ−G2.

We have now shown that K2 ∪ K ′3 lifts to a link isotopic to G2 ∪ G3. To prove
the former is not split, we show the latter is not split by showing that G3 does not
bound an (i + 1)-ball in the complement of G2. Lemma 3.3 assures us that Sn −G2

deformation retracts onto G3; this implies that πi(S
n−G2) = πi(G3) = Z. (It is well

known that the ith homotopy group of an i-sphere is Z; see, for example, [5]). Since
G3 is fixed by the deformation retract and generates πi after the deformation retract,
it must also generate πi before. As a nontrivial element of πi(S

n − G2), G3 cannot
bound a (i + 1)-ball in Sn − G2. Therefore, G2 ∪ G3 ⊂ Sn is not a split link, and
neither is K2 ∩K ′3 ⊂ Rn. �

Lemma 3.5. If K2 bounds an embedded (n− i)-ball D2 which does not intersect K1∪
K3, then K2 bounds an immersed (n− i)-ball D′2 that does not intersect K1∪K3∪B1.

Proof. Let D2 be an embedded (n−i)-ball bounded by K2 that is disjoint from K1∪K3

and intersects B1 transversally. We want to show there is an immersed (n − i)-ball
that is disjoint from B1. If D2 is disjoint from B1, we are done. If not, note that
B1 has dimension n − 1 and thus has codimension 1 in Rn. Since ∂B1 ∩ D2 = ∅
and ∂D2 ∩ B1 = ∅, the set B1 ∩D2 must be a collection of disjoint closed manifolds
{F1, F2, . . . } of dimension n− i− 1.

We note that since D2 is a ball, each of the Fi are separating in D2. We may define
the outside of Fi to be the component of D2 − Fi which contains K2 and the inside
to be the other component.

Since D2 is compact, we may assume that it has a finite number of critical points with
respect to xn. Since B1 lies in the plane xn = 0, we can conclude that the intersection
B1 ∩ D2 has a finite number of components. Because there are a finite number of
intersections, we may take an innermost component Fj (one which has no other Fi

inside of it in D2). Let U be the component of D2 − Fj inside of Fj.

Let f(x1, x2, . . . xn−1, xn) = (x1, x2, . . . xn−1, |xn|). Note that p is a point in Ki if and
only if f(p) is a point in Ki since each of the knots is symmetric with respect to xn.
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U 

D2

F1 

K1 

B1

K2 

Figure 3. We may cut out U and paste in f(U) to eliminate the
intersections of B1 and D2. In this figure, set in R3, we have simplified
the link by omitting K3.

K1 

B1

K2 

D2f(U) 

F1 

Figure 4. We reflect U ⊂ D2 across B1 to reduce the number of intersections.

This implies that if U ⊂ D2 then since U∩(K1∪K3) = ∅, we know f(U)∩(K1∪K3) =
∅.
Then we replace D2 by (D2 − U) ∪ f(U). See Figures 3-4. The new ball is not in
general position with respect to B1. We may take a small deformation of the new
(possibly no longer embedded) ball to decrease the number of intersections with B1.
We repeat, reducing the number of intersections each time, until we have a new ball
D′2 with boundary K2 that is disjoint from B1 and K1 ∪K3. �

Proof of Theorem 3.1. We now complete the proof of our main theorem. Observe
that if Li,n is an unlink, then K2 bounds a ball D2 disjoint from K1 ∪ K3, but
Lemma 3.5 shows that this implies K2 also bounds an immersed ball D′2 that does
not intersect K1 ∪ K3 ∪ B1. The existence of D′2 implies that K2 is homotopically
trivial in the complement of K1 ∪K3 ∪ B1. Since K ′3 ⊂ K3 ∪ B1, we know K2 must
also be homotopically trivial in the complement of K ′3. This, however, contradicts
Lemma 3.4. �

We note that by replacing our coefficients (1, 4, 9, and 16) in the Li,n formulas by
coefficients that are arbitrarily close to each one, say (1, 1 + ε, 1 + 2ε, and 1 + 3ε),
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we obtain embeddings of the same links containing two round spheres and a third
that is arbitrarily close to being a round sphere. Thus, although [7] shows that no
Brunnian link can be built out of round components, this paper provides an infinite
collection of Brunnian links in which two of the components are round and the third
is arbitrarily close to being round.

4. A special case

We have now proven our theorem, but a different proof technique exists for a subset
of the links. For the links L1,n, one of the components of the link is homeomorphic
to a circle, and we can utilize the fundamental group instead for our proof. Here we
allow K3 to be the (elliptical) circle, but symmetry dictates that the proof holds if
any of the other components had been the circle.

Theorem 4.1. L1,n is a convex Brunnian link.

Proof. We want to show that the loop K3 does not bound a disk disjoint from K1∪K2.
We do so by showing it is nontrivial in the fundamental group of Rn− (K1∪K2). We
first prove the following lemma.

Lemma 4.2. π1(Rn − (K1 ∪K2)) is the free group on two generators.

This follows from the following well known lemma.

Lemma 4.3. The groups π1(S
n−Ji), π1(Rn−Ki), and π1(B

n−Ki) are all isomorphic
to Z if Ki is a round (n− 2)-sphere in Bn ⊂ Rn and Ji is a round (n− 2)-sphere in
Sn.

Proof of Lemma 4.3. Both the complement of Bn and the boundary of Bn are simply
connected in Rn (and the same is true of a round ball in Sn) and thus the Seifert-
Van Kampen Theorem shows that the fundamental group of the larger space is only
dependent on the fundamental group of the ball. Now we know that π1(S

n − Ji),
π1(Rn−Ki), and π1(B

n−Ki) are all isomorphic to each other and we need only show
that π1(S

n − Ji) is isomorphic to Z. This follows from Lemma 3.3, which states that
if we take a round sphere Sn−2 ⊂ Sn, then Sn − Sn−2 deformation retracts onto S1

and therefore has the fundamental group of a circle. �

Proof of Lemma 4.2. Since K1 and K2 are unlinked, there exists an embedded Sn−1

that separates them. Therefore the Seifert-Van Kampen Theorem implies that the
fundamental group of Rn − (K1 ∪K2) is the free product of the fundamental groups
of Bn −K1 and Bn −K2, i.e., the free group on two generators. �

Now to conclude the proof of Theorem 4.1, we observe that in the case of L1,n, the
fundamental group of Rn − (K1 ∪K2) has generators

α(t) = ( 3 sin 2πt, 0, 0, . . . 0, 3− 3 cos 2πt)
β(t) = (2− 2 cos 2πt, 0, 0, . . . 0, 2 sin 2πt )

(0 ≤ t ≤ 1),
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with the origin as the base point. Let γ(t) = (t, 0, 0, . . . , 0). We orient K3 starting
from the point (1, 0, . . . , 0) and move initially in the positive xn direction.

We observe that γK3γ
−1 is homotopic to αβ−1α−1β, which is a commutator of the two

generators. (The circle α is clearly homotopic to the loop made by following the top
half of K3 then closing it by following the x1-axis. The hard part of this observation is
noticing that β−1α−1β is homotopic to a curve that follows the bottom half of ellipse
K3 and then returns along the x1-axis.) Since the commutator is nontrivial, K3 must
represent a nontrivial element in π1 (Rn − (K1 ∪K2)). Thus, L1,n is not an unlink
but its proper sublinks are unlinks; hence is L1,n is Brunnian. �

5. Open Questions

Here we list a few conjectures regarding the following infinite family of convex links.

(2) Li,j,n = K1 ∪K2 ∪K3

K1 = {(x1, x2, . . . xn) : x21 + x22 + · · ·+ x2n−j−1 = 4, xn−j = · · · = xn = 0}
K2 = {(x1, x2, . . . xn) : x2i+1 + x2i+2 + · · ·+ x2n = 9, x1 = x2 = · · · = xi = 0}

K3 = {(x1, x2, . . . xn) : x21 + x22 + · · ·+ x2i +
x2n−j + · · ·+ x2n−1 + x2n

16
= 1,

xi+1 = xi+2 = · · · = xn−j−1 = 0}

These links generalize the family Li,n considered in section 3, in that Li,0,n = Li,n.

Conjecture 5.1. All the links in the family Li,j,n are Brunnian.

Conjecture 5.2. There exist convex Brunnian links that are not isotopic to a link
of the form Li,j,n.

No such links exist in R3 for 3, 4, and 5 component links by [6, 2]. We speculate
that adding more components in R3 will not produce examples. However, in higher
dimensions it seems likely that other convex Brunnian links exist. In particular, is
there such a link comprised of three (n− 2)-dimensional knots for n > 3? Aside from
the Borromean rings in R3, this case is impossible within our families (1) and (2).

Conjecture 5.3. Although no Brunnian link can be built out of round spheres (see
[7]), it is true that for any ε > 0, our families (1) and (2) of links may be isotoped so
that K1 and K2 remain as round spheres and K3 is contained in an ε-neighborhood of
a round sphere. We conjecture that all convex Brunnian links can be made arbitrarily
close to perfectly round in this manner.
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[1] H. Brunn. Über verkettung. In Math. Phys. Klasse, volume 22 of Sitzungber, pages 77–99.
Bayerische Akad. Wiss., 1892.

[2] Robert M. Davis. Brunnian links of five components. Master’s thesis, Wake Forest University,
2005.

[3] Hans Debrunner. Links of Brunnian type. Duke Math. J., 28:17–23, 1961.



10 B. DAVIS, H.N. HOWARDS, J. NEWMAN, J. PARSLEY

[4] Michael H. Freedman and Richard Skora. Strange actions of groups on spheres. J. Differential
Geom., 25(1):75–98, 1987.

[5] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[6] Hugh Nelson Howards. Convex Brunnian links. J. Knot Theory Ramifications, 15(9):1131–1140,

2006.
[7] Hugh Nelson Howards. Brunnian spheres. Amer. Math. Monthly, 115(2):114–124, 2008.
[8] Bernt Lindström and Hans-Olov Zetterström. Borromean circles are impossible. Amer. Math.

Monthly, 98(4):340–341, 1991.
[9] David E. Penney. Generalized Brunnian links. Duke Math. J., 36:31–32, 1969.

[10] Takaaki Yanagawa. Brunnian systems of 2-spheres in 4-space. Osaka J. Math., 1:127–132, 1964.


	1. Introduction
	2. Standard definitions
	3. An infinite family of convex Brunnian links
	4. A special case
	5. Open Questions
	References

