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Abstract. We extend the notion of intrinsic linking to directed graphs.
We give methods of constructing intrinsically linked directed graphs, as
well as complicated directed graphs that are not intrinsically linked.
We prove that the double directed version of a graph G is intrinsically
linked if and only if G is intrinsically linked. One Corollary is that J6,
the complete symmetric directed graph on 6 vertices (with 30 directed
edges), is intrinsically linked. We further extend this to show that it

is possible to find a subgraph of J6 by deleting 6 edges that is still
intrinsically linked, but that no subgraph of J6 obtained by deleting 7
edges is intrinsically linked. We also show that J6 with an arbitrary edge
deleted is intrinsically linked, but if the wrong two edges are chosen, J6

with two edges deleted can be embedded linklessly.

1. Introduction

Research in spatial graphs has been rapidly on the rise over the last fif-
teen years. It is interesting because of its elegance, depth, and accessibility.
Since Conway and Gordon published their seminal paper in 1983 [4] show-
ing that the complete graph on 6 vertices is intrinsically linked (also shown
independently by Sachs [10]) and the complete graph on 7 vertices is in-
trinsically knotted, over 62 papers have been published referencing it. The
topology of graphs is, of course, interesting because it touches on chem-
istry, networks, computers, etc. This paper takes the natural step of asking
about the topology of directed graphs, sometimes called digraphs. Appli-
cations of graph theory are increasingly focused on directed graphs, from
epidimiology to traffic patterns (see, for example [6], [1]). Many of these ap-
plications depend, not just on the abstract directed graph, but the topology
and geometry of an actual realization of the graph. Examples abound, such
as very large scale integration (known as VLSI) for circuits. As a result,
understanding the topology of directed graphs is a worthy pursuit.

Recall that an undirected graph is intrinsically linked if every embedding
of the graph in R3 contains at least two non-splittably linked cycles. A graph
H is a minor of a graph G if H can be obtained from G by a sequence of
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vertex deletions, edge deletions and edge contractions. The set of all minor-
minimal intrinsically linked graphs is given by the seven Petersen family
graphs [4], [9], [10]. These graphs are obtained from K6 by4−Y and Y −4
exchanges. Similarly, we define a directed graph G to be intrinsically linked
if it contains a nontrivial link consisting of a pair of consistently oriented
directed cycles in every spatial embedding.

We prove that the double directed version of a graph G is intrinsically
linked if and only if G is intrinsically linked. One Corollary is that J6, the
complete symmetric directed graph on 6 vertices (with 30 directed edges),
is intrinsically linked. We extend this to show that it is possible to find
a subgraph of J6 by deleting 6 edges that is still intrinsically linked, but
that no subgraph of J6 obtained by deleting 7 edges is intrinsically linked
and that J6 with an arbitrary edge deleted is intrinsically linked, but if the
wrong two edges are chosen, J6 with two edges deleted can be embedded
linklessly. We further show that, unlike for undirected graphs, the edge
contraction operation does not necessarily preserve the property of having a
linkless embedding. Finally, we show that, again unlike for directed graphs,
the ∆− Y operation does not necessarily preserve intrinsic linking.

One can imagine numerous interesting applications of intrinsic linking in
directed graphs. One such application is to computer chips. Computer chips
can be thought of as containing embedded directed graphs where signals
are sent along wires that serve as edges. Diodes make the graph directed
allowing the electricity to flow in only one direction on a given wire and
gates serve as vertices. Intrinsic linking in the directed graph means that
any way of building the chip will require the wires to cross at least twice.
This is important because building chips where the wires cross adds to the
expense and complexity of the chip. Understanding exactly how many links
are intrinsic in the directed graph could help determine the difficulty and
cost of building a specific chip.

Another potential application is to the idea of maximum upward planar
embeddable subgraphs of directed graphs (see for example [2]). People are
interested in efficiently finding the largest planar subgraph of a directed
graph that can be embedded in R3 so that all the edges of the embedding
point monotonically upward. To check if a given graph or subgraph has
an upward planar embedding, it does not suffice to check if it has a cycle,
however a directed cycle is an obstruction to such an embedding as is intrin-
sic linking in the underlying graph. Thus intrinsic linking in the directed
graph would be a natural obstruction to study since it involves both the
existence of directed cycles within the directed graph and intrinsic linking
in the underlying graph.

The authors would like to thank Keir Lockridge and Danielle O’Donnol
for helpful comments.
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2. Preliminaries

We start by associating directed graphs and non-directed graphs with
each other. Recall that in a directed graph each edge has one vertex that is
its initial point or starting point and the other is said to be its terminal point
or ending point. Instead of viewing edges abstractly as pairs of vertices, we
view them as ordered pairs. For graphs that are not directed, a simple graph
is one which contains no loops (edges that run from a vertex to itself) or
multiple edges (two edges associated to the same pair of vertices). A simple
directed graph is one that contains no loops (edges that have the same initial
and terminal vertex) or multiple edges (two edges associated to the same
ordered pair of vertices). Note in this case there may be two edges associated
to vi and vj , i 6= j, one with vi as its initial point and vj as its terminal point
and one in the opposite direction. The complete graph on n vertices, Kn has
exactly one edge for each distinct pair of vertices. The complete symmetric
directed graph on n vertices, Jn has exactly one edge for each ordered pair
of distinct vertices. Note Jn has twice as many edges as Kn.

To help clarify when we have put a direction on the edges of an undirected
graph, say G, we will refer to the directed graph as G. To differentiate when
we are specifying a graph and when an embedding of a graph we will refer
to the abstract graph as G, and the embedded version as Γ (or Γ for the
embedded directed graph etc).

Given a graph G, we define the double directed version of G, denoted D(G)
by taking the vertices of G and for each edge of G associated to vertices vi
and vj we include two edges, one with vi as its initial point and vj as its
terminal point and one in the opposite direction. The embedded version of
D(G) we will call ∆(Γ).

We will follow the same convention on edges and cycles as we do with
graphs. If ei is an edge of G, and we put directions on the edges of G,
then ei will correspond to ei ⊂ G. If we embed G or G the edge ei will
then correspond to αi ⊂ Γ or αi ⊂ Γ respectively. If we double G to get
directed graph D(G), then we assign the two directed edges ei and e′i to ei
(and, of course αi and α′i in ∆(Γ)). Finally for cycles in G we will reserve

the notation C for a consistently oriented cycles where as C may be used to
designate any cycle even if it is not directed or if it is directed, but perhaps
not consistently oriented. If C ⊂ G, and we embed G to get Γ, we will refer
the cycle that is the image of C as γ ⊂ Γ and again use the oriented cycle
notation as before, so γ would represent a consistently oriented, embedded
cycle.

Given a directed graph G, we can, of course, associate a non-directed
graph G by keeping the same set of vertices and for each edge of G associated
to the ordered pair (vi, vj) we include an edge associated to the vertices vi
and vj (essentially just ignoring the direction). We call G the underlying

graph of G. Note that G, and G have the same number of edges here. We
define the underlying simple graph of G to be the largest simple subgraph
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of the underlying graph of G. As examples, J6 = D(K6) and K6 is the
underlying simple graph of J6. The underlying graph of J6, has two parallel
edges for each edge of K6.

3. Results

Lemma 3.1. For all n, given any complete (non-directed) graph Kn we may
assign directions to the edges to yield a directed graph Kn and in which Kn

contains no cycles.

It is important to note that Kn 6= J6. It has half as many edges, only one

edge for any distinct pair of vertices, instead of two. There are 2(n2) ways to
orient the edges of Kn, so up to graph isomorphism there are many distinct
versions of Kn, while there is a single K6 and a single J6 up to isomorphism.

Proof. To form a Kn with no cycles, we start by choosing directions for
all edges containing vertex v1 and direct all of them away from v1. Now
we know no cycle can contain v1 since every cycle must contain one edge
entering a vertex and one leaving it. For v2 direct all currently unlabelled
edges containing v2 away from v2. The only edge entering v2 comes from
v1, call it e1. The edge e1 cannot be part of a cycle since no cycle contains
v1. No edge other than e1 enters v2, so v2 cannot be part of a cycle. Now
for v3, direct all currently unlabelled edges containing v3 away from v3. The
only edges entering v3 come from v1 and v2, call these e2 and e3. Now as
before these two edges cannot be part of a cycle and no other edge enters
v3, so v3 cannot be part of a cycle. Continue in this manner until all edges
are labelled (any edge from vi to vj with i < j will have vi as its initial
point and vj as its terminal point). We now see that the graph contains no

cycles. We include a picture of K5 embedded in this manner, with no cycles,
in Figure 1.

�

Theorem 3.2. For all n, given any complete (non-directed) graph Kn we
may assign directions to the edges to yield a directed graph Kn with Kn not
intrinsically linked.

Proof. Label as in Lemma 3.1 Obviously a graph with no cycles cannot
contain a pair of linked cycles. �

We may now generalize to all (non-directed) graphs.

Corollary 3.3. Every graph G is the underlying graph of a directed graph
G that is not intrinsically linked.

Proof. Since every simple graph is a subgraph of a complete graph the result
is immediate in that case. If G is not simple, we direct all edges of a maximal
simple graph and then use the same direction for all parallel edges. Before
considering loops, there can be no cycles. Embed the loops so they bound
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Figure 1. Here K5 is constructed with directed edges and
with no cycles. The same construction will work for Kn in
general.

a disk in the complement of the graph (this may all be done in a small
neighborhood of the edge’s associated vertex). Now the directed graph will
have cycles consisting of the loops, but the cycles cannot form a non-split
link since they all bound disks that are are disjoint on their interior. �

Theorem 3.5 makes use of the following lemma introduced previously in
[3] and [5]. Recall that a theta curve (or theta graph) is a graph with two
vertices of valence three and three edges running between the two vertices.
Note that a theta curve will always contain three cycles resulting from the
three ways to pick two of its edges (the cycles will not, of course, be disjoint
from each other).

Lemma 3.4. Given disjoint embeddings of a cycle γ and a theta curve θ in
S3, with θ containing three cycles γ1, γ2, and γ3, if γ has nonzero linking
number with γi for some i, then γ also has nonzero linking number with γj
for some j 6= i.

Proof. First we show that the theta graph lies on an immersed sphere, with
the cycles of the theta graph dividing it into three distinct disks. This can
be proven in essentially the same way that one can prove that every knot
bounds a disk (although the disk will, of course, not be embedded if the knot
is not the unknot). In that situation one may take a homotopy of the knot
through space to a circle, take the flat disk it bounds and then reverse the
homotopy, extending it to the disk and knot as a pair. Here instead we take
a homotopy of the theta graph onto an embedded sphere so that the graph
is embedded on the sphere with the three cycles dividing the sphere into
three disks which are disjoint on their interiors. Now reverse the homotopy
extending it to the pair of the sphere and the graph. The sphere, of course,
now may not be embedded since the cycles may be knotted, but this is not
a problem.
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Now γ must algebraically intersect the sphere zero times, showing that
the sum of the linking numbers of γ with γ1, γ2 and γ3 with sign must add
to zero. This shows that if one of the terms in the sum is nonzero, at least
two of the terms must be nonzero. �

Theorem 3.5. If G is intrinsically linked then D(G) is intrinsically linked.

Proof. For any embedding of D(G) (called ∆(Γ) once embedded) the un-

derlying graph must contain a link since the underlying graph for D(G)
contains (numerous) copies of G. Let the edges of one copy of G be labelled
{α1, α2, . . . αn}. Let the complementary edges pointing in the opposite di-

rection be labelled {α′1, α′2, . . . α′n}, forming another copy of G, sharing only
the vertices, where we always choose the labels so that if αs runs from vi to
vj in ∆(Γ), then α′s runs from vj to vi in ∆(Γ). The link from the first copy
of G in the embedding of the underlying graph consists of a (non-directed)
linked pair of cycles. If those cycles have consistent directions when viewed
as part of ∆(Γ) we are done. If not, without loss of generality let γ be one
of the cycles and γ1 be the other. Choose the labels so that γ1 does not
have all of its edges consistently directed (γ may fit this description, too,
but may not).

Without loss of generality, let α1 ∪ α2 ∪ · · · ∪ αj be all the edges of γ1.
We are trying to find a consistently oriented directed cycle linked with γ.
We arbitrarily choose a favorite direction for γ1 (although for efficiency one
would probably choose the direction that at least half the edges of γ1 already
pointed). We leave those edges already going in our selected direction fixed
and focus on the edges going the other direction. We will swap out the
edges, trying to get a linked cycle in the direction we have chosen. Let αi be
an inconsistent edge relative to our desired direction. Now γ1∪α′i is a theta

curve and by Lemma 3.4 either αi∪α′i or α1∪α2∪· · ·∪αi−1∪α′i∪αi+1 · · ·∪αj

is linked with γ. We know αi ∪ α′i is consistently oriented. If it is linked

with γ let γ′′ = αi ∪ α′i. If not then we know α1 ∪ α2 ∪ · · · ∪ αi−1 ∪ α′i ∪
αi+1 ∪ · · · ∪ αj , which we will call γ2, is the linked cycle. It follows that γ2
has one more consistently oriented edge than γ1 did. If all the edges are now
consistent let γ2 = γ′′, if not, pick one of the now smaller collection of edges
pointing the wrong way, say αk and take the theta curve where we add α′k
to α1 ∪ α2 ∪ · · · ∪ αi−1 ∪ α′i ∪ αi+1 ∪ · · · ∪ αj . The process must terminate,
since each time we either have a linked, consistently oriented, two cycle or
we produce a cycle γi+1 from γi, where γi+1 is the same length as γi, has
one more consistently oriented edge than γi did, and is still linked with γ.
Repeat until we have a consistently oriented cycle that is linked with γ and
call that new cycle γ′′.

Now if γ is consistently oriented, we are done. If not, we repeat now
letting γ′′ play the role of the fixed cycle and arbitrarily picking a favorite
direction for γ. We then follow the same type of process as before, taking an
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edge αs of γ that is inconsistently oriented and add in α′s to γ to get a theta
curve. The same algorithm now applied to γ shows we have a consistently
oriented cycle that is linked with γ′′. �

Theorem 3.6. If G is not intrinsically linked (knotted) then D(G) is not
intrinsically linked (knotted).

Proof. Let Γ be a linkless (knotless) embedding of G. Take edges parallel to
the edges of Γ and orient one in each direction so that the edge from vi to vj
and the edge from vj to vi bound a disk disjoint from the rest of the graph

on its interior. The result is a linkless (knotless) embedding of D(G). �

We now sharpen our result.

Theorem 3.7. Let G be J6 minus a consistently oriented cycle of length at
least 3, then G is intrinsically linked. The same is true if G is J6 minus two
disjoint consistently oriented triangles or a consistently oriented 4 cycle and
a disjoint edge.

Note that when we use the term cycle here, the first and last vertex are
the same and otherwise no vertex is repeated more than once.

Proof. If we are deleting a single n cycle from J6, then without loss of
generality let the deleted cycle consist of edges labelled e′1, e

′
2, . . . e

′
n. Take a

subgraph of G, including edges e1, e2, . . . en whose underlying graph is a K6

(We can do this since we never deleted both of the edges between a given
pair of vertices). Once embedded, this graph must have a (non-directed)
linked pair of cycles. If none of α1, α2, . . . αn are in the cycles then proceed
as in the proof of Theorem 3.5. If some of them are, use the included edges
to dictate the preferred direction of the cycles. Note that the preferred
direction of a given cycle will be well defined. This is true because if one of
the triangles includes only one of the edges, then we use the direction of that
single edge. If one included two of them, they are adjacent edges in both
the triangle and the n-cycle and thus must be consistently oriented in both,
so all of the edges of α1, α2, . . . αn that might be included in a given triangle
will be consistently oriented in the triangle. We only consider swapping
out inconsistent edges, so any edge αi that might be swapped out is not an
element of {α1, α2, . . . αn} and thus we know that both αi and α′i are in our
remaining graph even after the n-cycle was deleted. The only way that one
of the triangles could include 3 edges would be if n = 3 and the triangle
was exactly {α1, α2, α3}, but this triangle is already consistently oriented.
If n > 3, we cannot use 3 of the edges in the same triangle since no subset
of α1, α2, . . . αn forms a triangle.

The argument in the cases of two disjoint consistently oriented triangles
or a consistently oriented 4 cycle and a disjoint edge is similar. �

Corollary 3.8. The graphs J6 − ei, J6 − ei − ej, and J6 − ei − ej − ek are
intrinsically linked if ei, ej, and ek do not share a vertex.
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Figure 2. We see a linkless embedding of J6 minus two
edges between the same pair of vertices

Proof. Each of these have a subgraph that is J6 minus a consistently oriented
Hamiltonian cycle. A graph with an intrinsically linked subgraph must be
intrinsically linked.

�

Theorem 3.9. The graph J6− ei− ej is not intrinsically linked if ei and ej
share exactly one vertex and are not consistently oriented with each other,
but is intrinsically linked if they are consistently oriented. Further, J6−ei−ej
is not intrinsically linked if ei and ej share both vertices (but with opposite
orientations).

Proof. Figure 2 shows a linkless embeddings of J6 − ei − ej where ei and ej
share a vertex and are not consistently oriented. Figure 3 shows a linkless
embedding of J6 − ei − ej where ei and ej share both vertices, but with

opposite orientations (ei = e′j).

Corollary 3.8 implies that in all other cases J6 − ei − ej is intrinsically
linked.

�

Corollary 3.10. The graph J6 with seven edges deleted is never intrinsically
linked.

Proof. Seven edges will have seven terminal points. Since we have only six
vertices one vertex must be the terminal point of at least two of the edges
removed. This means the two edges share a vertex and are not consistently
oriented with each other. �
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Figure 3. We see a linkless embedding of J6 minus two
inconsistently oriented edges that share exactly one vertex.

4. Examining traditional moves that preserve intrinsic linking
in non-directed graphs in the setting of directed graphs.

We recall that for non-directed graphs the ∆−Y move preserves intrinsic
linking [7]. It is natural to ask if the same is true for directed graphs. It is
clear that if you replace a triangle with a Y and an added vertex it will not
preserve intrinsic linking if you arbitrarily assign directions to the edges in
the Y . This would fail, for example, if one picked a graph embedded with
a unique link in it made up of two directed triangles. Now replace one of
those triangles with a Y where all the edges of the Y have the added vertex
as a terminal point. There is no link in the complement of the Y , but since
no edge has its initial point at the added vertex there are no cycles and thus
no links that run through the Y . One might wonder if one could choose the
directions for the Y more wisely and preserve intrinsic linking. We answer
that in the negative in the following theorem

Theorem 4.1. The ∆− Y move, where we replace a directed triangle with
by a directed Y , does not preserve intrinsic linking no matter how the three
edges are oriented.

Proof. We prove this by generating a specific counterexample, where the
initial graph is intrinsically linked, but after a single ∆− Y move, no mat-
ter how the Y is oriented, the resulting graph is not. We start with an
embedding of a graph Γ shown in Figure 4. Note that this is a J6 with
two disjoint, consistently oriented triangles removed so by Theorem 3.7 the
graph is intrinsically linked. We adopt the convention in the figure that
edges with no orientation drawn on them represent two edges embedded
next to each other, but pointing in opposite directions. The unique link in
this embedding is the cycle corresponding to vertices v1, v3 and v5 linked
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Figure 4. An intrinsically linked directed graph Γ embed-
ded so that it contains a unique link. Edges with no orienta-
tion drawn on them represent two edges embedded next to
each other, but pointing in opposite directions.

with the cycle for vertices v2, v6, and v4. We apply the ∆− Y move to the
cycle v2, v6, v4 to get the graph in Figure 5. Note that no matter how we
orient the edges (v2, v7), (v4, v7) and (v6, v7) at least two of the edges will
have to have either v7 as their initial point or their terminal point and thus
there will be at least one pair of edges in the Y that fail to be consistently
oriented with each other. In Figure 5 we have chosen to have (v2, v7) and
(v6, v7) inconsistently oriented, but we can do this without loss of general-
ity in the case where the Y contains exactly one pair of edges that are not
consistently oriented due to symmetries of the graph. We could, of course,
reverse the directions of all of the edges in the Y , but the argument in that
case is completely analogous. We also could orient it so that two or even
all three pairs of edges are not consistently oriented instead of just one pair,
but that only makes the argument easier, so we may focus on the single case
shown in the figure.

Now note that any link in the new graph must use edge (v2, v7) because
otherwise the only crossings left are from the edges between v1 and v6 and
between v3 and v4. Since (v2, v7) is consistently oriented with (v7, v4), but
not (v6, v7), we know that any link must also involve (v7, v4). A quick
inspection shows there are no links left in the graph. (Once we delete the
unused edge (v6, v7), we can think of the graph as isotopic to Γ with edges
(v2, v6) and (v4, v6) deleted and a single vertex of degree two inserted in the
middle of the edge (v2, v4).) As Γ had only one link and that link contained
both edges (v2, v6) and (v4, v6), clearly the new graph contains no links.

�
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Figure 5. A directed graph formed from Γ via a ∆−Y move
in a linkless embedding. Edges with no orientation drawn on
them represent two edges embedded next to each other, but
pointing in opposite directions.

Recall that a vertex expansion of a vertex v in a graph G is achieved
by replacing v with two vertices, v′ and v′′, adding the edge (v′, v′′), and
connecting a subset of the edges that were incident to v to v′, and connecting
the remaining edges that were incident to v to v′′. The reverse of this
operation is edge contraction. We say that v is expanded to a double edge
if both the edges (v′, v′′) and (v′′, v′) are added. The reverse operation is a
double edge contraction.

We have the following result.

Theorem 4.2. Vertex expansion does not preserve the property of being
intrinsically linked. Equivalently, edge contraction does not preserve the
property of having a linkless embedding.

Proof. See Figure 6. The directed graph on the left of the figure is intrinsi-
cally linked, by Theorem 3.7. The directed graph embedding shown on the
right is linkless.

�

Note that if the added edge in Figure 6 had the opposite direction, this
embedding would have a link. We have shown that vertex expansion fails
to preserve intrinsic linking if the direction of the edge is chosen arbitrarily.
It is unclear if vertex expansion preserves intrinsic linking if we are allowed
to pick the direction of the edge wisely.

Theorem 4.3. Let G have a linkless embedding, and let G′ be obtained from
G by a double edge contraction. Then G′ has a linkless embedding.
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αv

Contract

Expand

Figure 6. The vertex v is expanded to the edge α. Edges
with no orientation drawn on them represent two edges em-
bedded next to each other, but pointing in opposite direc-
tions.

Proof. Assume the hypotheses. Let Γ be a linkless embedding of G. Let α
and α′ denote the double edge that is contracted to obtain embedding Γ′ of
G′. By contracting α down to a vertex, v, the result is an embedding of G′,
Γ′, plus an extra loop from edge α′ based at vertex v that is not linked with
any oriented cycle in Γ′ (else the cycle (α, α′) would have been linked in the
embedding Γ). Since Γ was linkless, the only possible linked cycle pairs in
Γ′ must contain a cycle that passes through the vertex v.

Suppose such a pair of oriented, linked cycles, γ and γ′ exist. Without
loss of generality, let γ be the cycle that contains v. Then γ pulls back to
a (perhaps not consistently oriented) cycle containing α in Γ. (In theory,
γ could pull back to a cycle that passes through just one vertex of α, but
does not include α. In this case, the oriented non-split link pulls back to an
oriented non-split link in Γ, which is a contradiction.) By abuse of notation,
we denote this cycle in Γ as γ. We know that γ′ ⊂ Γ′ corresponds to an
oriented cycle γ′ ⊂ Γ that is linked with γ. Since Γ is linkless, γ is indeed
not consistently oriented. In particular the orientation at α does not agree
with the orientation of the other edges of γ. By Lemma 3.4, however, either
the cycle of length two (α, α′) or the cycle formed by replacing α in γ with
α′ is linked with γ′, and both of these linked cycles are consistently oriented
in Γ. This is a contradiction, thus Γ′ is linkless showing G′ indeed has a
linkless embedding.

�
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We may state this equivalently as:

Theorem 4.4. If G is intrinsically linked and G′ is obtained from G by a
vertex expanded to a double edge, then G′ is also intrinsically linked.

Corollary 4.5. Suppose G is intrinsically linked. If we take Γ, an embedding
of G, and expand a vertex to a single new edge e, we may pick a direction
on e such that the expanded, directed graph Γ+ contains a directed link.

Proof. By Theorem 4.4, we know that expanding G to get G′ with double
edge expansion is intrinsically linked. Therefore if we pick any embedding
of G′ with new edges α and α′ parallel to each other such that α∪α′ bounds
a disk in the complement of the graph, but with opposite directions to get
Γ′, we know Γ′ contains a link. Since we picked α and α′ so that α ∪ α′
bounds a disk in the complement of the graph, they cannot form one of the
components of the non-split link. Thus this link uses at most one of the two
edges. Without loss of generality, let the edge used be α. Then let Γ+ be
Γ′ with α′ deleted. This graph is constructed to be isotopic to the graph we
were interested in, and it contains a link.

�

Note that the direction we picked in this proof was dependent on the
embedding, so this is slightly weaker than proving that vertex expansion with
careful direction selection preserves intrinsic linking. Perhaps for a different
embedding the preferred direction to get a link would be the opposite.

5. Open Questions

We close with a few open questions. Since intrinsic linking in directed
graphs is a new direction for this field, the options for open questions are rich
and plentiful. Just as with the study on non-directed graphs, there should
be extensions of this work that are accessible to undergraduate research and
yet there also are deep difficult questions to answer.

Question 5.1. Does vertex expansion (to a single directed edge) preserve
intrinsic linking if we may carefully choose the direction of the expanded
edge? In other words, if G is intrinsically linked and G′ is obtained from G
by a vertex expanded to a single directed edge e′, and G′′ is identical to G′,
except we replace e′ with e′′, where e′′ has the same endpoints as e′, but with
opposite orientation, must G′ or G′′ be intrinsically linked?

If we take an embedding of J6 based on an embedding of K6 which con-
tains a unique non-split link and then for each αi in the embedding of K6

take αi and α′i in our embedding of J6 parallel to each other, we get an

embedding of J6 with exactly four non-split links in it. Each of the linked
triangles becomes two triangles with opposite orientations. The two pairs of
triangles are linked, so there are four ways to pick from the two pairs to get
a link. These links, of course, are not disjoint from each other, since they
share vertices and even entire components, but they are distinct. There are



14 FOISY, HOWARDS, RICH

currently no known embeddings of J6 with fewer links than this. This leads
to more open questions.

Question 5.2. How many distinct links must D(G) have if G is intrinsically
linked?

Parallel to work on non-directed graphs we ask the following important
questions.

Question 5.3. What is the complete list of minor minimal intrinsically
linked directed graphs?

Note that by [8], such a list must be finite. Unfortunately, such a list
will not completely characterize intrinsically linked directed graphs, as edge
contraction does not necessarily preserve having a linkless embedding.

Question 5.4. Is there a set of moves, like the Y −∆ and ∆−Y moves for
non-directed graphs, that will generate the complete list of minor minimal
intrinsically linked directed graphs?

Variations of many of the results that have been obtained for non-directed
graphs could be attempted for directed graphs.

Question 5.5. For what n does Jn always contain a non-split 3 component
link?

Note that in the case of non-directed graphs, K9 was the smallest possible
graph because each component needed to be at least a triangle, but in Jn,
link components may be bigons, so this bound does not hold. Even J6 can
be embedded with a 3 component split link, but it is, of course, easy to find
embeddings of J6 that do not contain a non-split 3-component link.

It is also natural to ask how intrinsic knotting fits into the realm of di-
rected graphs

Question 5.6. Is J7 intrinsically knotted?

Question 5.7. What is the complete minor minimal set of intrinsically
knotted directed graphs?

Question 5.8. If G is intrinsically knotted, is D(G) intrinsically knotted?

Again many of the results that have been obtained for intrinsic knotting
in non-directed graphs could be attempted for directed graphs.

Additionally, one might consider intrinsic knotting and linking in graphs
where some edges are directed and some are not. In that case a cycle could
use both directed edges and non-directed edges, in which case any directed
edges in a given cycle would need to be consistently oriented, while non
oriented edges could be used in any cycle.
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