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EVERY GRAPH HAS AN EMBEDDING IN S3

CONTAINING NO NON-HYPERBOLIC KNOT

ERICA FLAPAN AND HUGH HOWARDS

In contrast with knots, whose properties depend only on their extrinsic
topology in S3, there is a rich interplay between the intrinsic structure of a
graph and the extrinsic topology of all embeddings of the graph in S3. For
example, it was shown in [2] that every embedding of the complete graph
K7 in S3 contains a non-trivial knot. Later in [3] it was shown that for every
m ∈ N, there is a complete graph Kn such that every embedding of Kn in
S3 contains a knot Q (i.e., Q is a subgraph of Kn) such that |a2(Q)| ≥ m,
where a2 is the second coefficient of the Conway polynomial of Q. More
recently, in [4] it was shown that for every m ∈ N, there is a complete graph
Kn such that every embedding of Kn in S3 contains a knot Q whose minimal
crossing number is at least m. Thus there are arbitrarily complicated knots
(as measured by a2 and the minimal crossing number) in every embedding
of a sufficiently large complete graph in S3.

In light of these results, it is natural to ask whether there is a graph such
that every embedding of that graph in S3 contains a composite knot. Or
more generally, is there a graph such that every embedding of the graph
in S3 contains a satellite knot? Certainly, K7 is not an example of such a
graph since Conway and Gordon [2] exhibit an embedding of K7 containing
only the trefoil knot. In this paper we answer this question in the negative.
In particular, we prove that every graph has an embedding in S3 such that
every non-trivial knot in that embedding is hyperbolic. Our theorem implies
that every graph has an embedding in S3 which contains no composite or
satellite knots. By contrast, for any particular embedding of a graph we can
add local knots within every edge to get an embedding such that every knot
in that embedding is composite.

Let G be a graph. There is an odd number n, such that G is a minor
of Kn. We will show that for every odd number n, there is an embedding
of Kn in S3 such that every non-trivial knot in that embedding of Kn is
hyperbolic. It follows that there is an embedding of G in S3 which contains
no non-trivial non-hyperbolic knots.

Let n be a fixed odd number. We begin by constructing a preliminary
embedding of Kn in S3 as follows. Let h be a rotation of S3 of order n
with fixed point set α ∼= S1. Let V denote the complement of an open
regular neighborhood of the fixed point set α. Let v1, . . . , vn be points in V
such that for each i, h(vi) = vi+1 (throughout the paper we shall consider
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2 ERICA FLAPAN AND HUGH HOWARDS

our subscripts mod n). These vi will be the vertices of the preliminary
embedding of Kn.

Definition 1. By a solid annulus we shall mean a 3-manifold with bound-
ary which can be parametrized as D× I where D is a disk. We use the term
the annulus boundary of a solid annulus D × I to refer to the annulus
∂D × I. The ends of D × I are the disks D × {0} and D × {1}. If A is
an arc in a solid annulus W with one endpoint in each end of W , and A
co-bounds a disk in W together with an arc in ∂W , then we say that A is a
longitudinal arc of W .

As follows, we embed the edges of Kn as simple closed curves in the
quotient space S3/h = S3. Observe that since V is a solid torus, V ′ = V/h
is also a solid torus. Let D′ denote a meridional disk for V ′ which does not
contain the point v = v1/h. Let W ′ denote the solid annulus cl(V ′ − D′)
with ends D′

+ and D′

−
. Since n is odd, we can choose unknotted simple

closed curves S1, . . . , Sn−1

2

in the solid torus V ′ such that each Si contains

v and has winding number n + i in V ′, the Si are pairwise disjoint except
at v, and for each i, W ′ ∩ Si is a collection of n + i untangled longitudinal
arcs (see Figure 1).

W'

D'

D'+

_

S1
S2 S3

S1

v

J' rr

rr

C r

r

'

Figure 1. For each i, W ′∩Si is a collection of n+i untangled
longitudinal arcs.

We define two additional simple closed curves J ′ and C ′ in V ′ whose
intersections with W ′ are illustrated in Figure 1 as follows. First, choose a
simple closed curve J ′ in V ′, whose intersection with W ′ is a longitudinal
arc which is disjoint from and untangled with S1 ∪ · · · ∪ Sn−1

2

. Next we let

C ′ be the unknotted simple closed curve in W ′− (S1∪ · · ·∪Sn−1

2

∪J ′) whose

projection is illustrated in Figure 1. In particular, C contains one half twist
between J ′ and the set of arcs of S1 ∪ · · · ∪ Sn−1

2

which do not contain v,

another half twist between those arcs of S1 ∪ · · · ∪ Sn−1

2

and the set of arcs



EVERY GRAPH HAS AN EMBEDDING WITH NO NON-HYPERBOLIC KNOT 3

containing v, and r full-twists between each of the individual arcs of Si and
Si+1 containing v. We will determine the value of r later.

Each of the n−1
2 simple closed curves S1, . . . , Sn−1

2

lifts to a simple closed

curve consisting of n consecutive edges of Kn. The vertices v1, . . . , vn

together with these n(n−1)
2 edges gives us a preliminary embedding Γ1 of Kn

in S3.
Lift the meridional disk D′ of the solid torus V ′ to n disjoint meridional

disks D1, . . . , Dn of the solid torus V . Lift the simple closed curve C ′

to n disjoint simple closed curves C1, . . . , Cn, and lift the simple closed
curve J ′ to n consecutive arcs J1, . . . , Jn whose union is a simple closed
curve J . The closures of the components of V − (D1 ∪ · · · ∪ Dn) are solid
annuli, which we denote by W1, . . . , Wn. The subscripts of all of the lifts
are chosen consistently so that for each i, vi ∈ Wi, Ci ∪ Ji ⊆ Wi, and
Di and Di+1 are the ends of the solid annulus Wi. For each i, the pair
(Wi − (Ci ∪ Ji), (Wi − (Ci ∪ Ji)) ∩ Γ1)) is homeomorphic to (W ′ − (C ′ ∪
J ′), (W ′ − (C ′ ∪ J ′)) ∩ (S1 ∪ · · · ∪ Sn−1

2

)). For each i, the solid annulus W ′

contains n + i − 1 arcs of Si which are disjoint from v. Hence each edge of
the embedded graph Γ1 meets each solid annulus Wi in at least one arc not
containing vi.

Let κ be a simple closed curve in Γ1. For each i, we let ki denote the set
of those arcs of κ∩Wi which do not contain vi, and let ei denote either the
single arc of κ∩Wi which does contain vi or the empty set if vi is not on κ.
Observe that since κ is a simple closed curve, it contains at least three edges
of Γ1; and as we observed above, each edge of κ contains at least one arc of
ki. Thus for each i, ki contains at least three arcs. Either ei is empty, the
endpoints of ei are in the same end of the solid annulus Wi, or the endpoints
of ei are in different ends of Wi. We illustrate these three possibilities for
(Wi, Ci ∪ Ji ∪ ki ∪ ei) In Figure 2 as forms a), b) and c) respectively. The
number of full-twists represented by the labels t, u, x, or z in Figure 2 is
some multiple of r depending on the particular simple closed curve κ.

W

x

u

t
i

J i

Ci

k

Form a) Form b) Form c)

i

ei

viCi
Wi

k iJ i

ei

viCi
Wi

kiJ i

z

Figure 2. The forms of (Wi, Ci ∪ Ji ∪ ki ∪ ei).
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For each of the forms of (Wi, Ci ∪ Ji ∪ ki ∪ ei) illustrated in Figure 2, we
will associate an additional arc and an additional collection of simple closed
curves as follows (illustrated in Figure 3). Let the arc Bi be the core of a
solid annulus neighborhood of the union of the arcs ki in Wi such that Bi

is disjoint from Ji, Ci, and ei. Let the simple closed curve Q be obtained
from Ci by removing the full twists z, x, t, and u. Let Z, X, T , and U be
unknotted simple closed curves which wrap around Q in place of z, x, t, and
u as illustrated in Figure 3.

W
X

U

Ti

J i

Q

B

Form a) Form b) Form c)

i

e i

vi

Q

Wi

BiJ i

e i

vi

Q

Wi

B iJ i

Z

Figure 3. The forms of Wi with associated simple closed
curves and the arc Bi.

For each i, let Mi denote an unknotted solid torus in S3 obtained by gluing
together two identical copies of Wi along Di and Di+1, making sure that the
end points of the arcs of Ji, Bi, and ei match up with their counterparts in
the second copy to get simple closed curves j, b, and E respectively in Mi.
Thus Mi has a 180◦ rotational symmetry around a horizontal line which
goes through the center of the figure and the end points of both copies of
Ji, Bi, and ei. Recall that in form a), ei is the empty set, and hence so is E.
Let Q1 and Q2, X1 and X2, Z1 and Z2, T1 and T2, and U1 and U2 denote the
doubles of the unknotted simple closed curves Q, X, Z, T , U respectively.

Let Y denote the core of the solid torus cl(S3−Mi). We associate to Form
a) of Figure 3 the link L = Q1 ∪Q2 ∪ j ∪ b∪ Y . We associate to Form b) of
Figure 3 the link L = Q1∪Q2∪j∪b∪Y ∪E∪X1∪X2∪Z1∪Z2. We associate
to Form c) of Figure 3 the link L = Q1∪Q2∪j∪b∪Y ∪E∪T1∪T2∪U1∪U2.
Figure 4 illustrates the three forms of the link L.

The software program SnapPea (available at http://www.geometrygames.
org/SnapPea/index.html) can be used to determine whether or not a given
knot or link in S3 is hyperbolic, and if so SnapPea estimates the hyperbolic
volume of the complement. We used SnapPea to verify that each of the
three forms of the link L illustrated in Figure 4 is hyperbolic.

A 3-manifold is unchanged by doing Dehn surgery on an unknot if the
boundary slope of the surgery is the reciprocal of an integer (though such
surgery may change a knot or link in the manifold). According to Thurston’s

http://www.geometrygames.
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Figure 4. The possible forms of the link L.

Hyperbolic Dehn Surgery Theorem [1, 5], all but finitely many Dehn fillings
of a hyperbolic link complement yield a hyperbolic manifold. Thus there
is some r ∈ N such that for any m ≥ r, if we do Dehn filling with slope
1
m

along the components X1, X2, Z1, Z2 of the link L in form b) or along
the components T1, T2, U1, U2 of the link L in form c), then we obtain a
hyperbolic link Q1 ∪ Q2 ∪ j ∪ b ∪ Y ∪ E, where the simple closed curves Q1

and Q2 are obtained by adding m full twists to Q1 and Q2 in place of each
of the surgered curves.

We fix the value of r according to the above paragraph, and this is the
value of r that we use in Figure 1. Recall that the number of twists x, z,
u, and t in the simple closed curves Ci in Figure 2 are each a multiple of r.
Thus the particular simple closed curves Ci are determined by our choice of
r together with our choice of the simple closed curve κ. Now we do Dehn
fillings along X1 and X2 with slope 1

x
, along Z1 and Z2 with slope 1

z
, along

U1 and U2 with slope 1
u
, and along T1 and T2 with slope 1

t
. Since x, z, u,

and t are each greater than or equal to r, the link Q1 ∪ Q2 ∪ j ∪ b ∪ Y ∪ E
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that we obtain will be hyperbolic. In form a), E is the empty set and the
link Q1∪Q2∪j∪b∪Y ∪E was already seen to be hyperbolic using SnapPea.
In this case, we do no surgery and we let the simple closed curves Q1 = Q1

and Q2 = Q2. It follows that each form of Mi − (Q1 ∪ Q2 ∪ j ∪ b ∪ E) is a
hyperbolic 3-manifold. Observe that Mi− (Q1∪Q2∪ j∪ b∪E) is the double
of Wi − (Ci ∪ Ji ∪ Bi ∪ ei).

Now that we have fixed Ci, we let N(Ci), N(Ji), N(Bi), and N(ei) be
pairwise disjoint regular neighborhoods of Ci, Ji, Bi, and ei respectively in
the interior of each of the forms of the solid annulus Wi (illustrated in Figure
2). We choose N(Bi) such that it contains the union of the arcs ki. Note
that in form a) ei is the empty set and hence so is N(ei). Let N(ki) denote
a collection of pairwise disjoint regular neighborhoods one containing each
arc of ki such that N(ki) ⊆ N(Bi). Let Vi = cl(Wi − (N(Ci) ∪ N(Ji) ∪
N(Bi) ∪ N(ei))), let ∆ = cl(N(Bi) − N(ki)), and let V ′

i = Vi ∪ ∆. Since
N(Bi) is a solid annulus, it has a product structure D2 × I. Without loss
of generality, we assume that each of the components of N(ki) respects the
product structure of N(Bi). Thus ∆ = F × I where F is a disk with holes.

Definition 2. Let X be a 3-manifold. A sphere in X is said to be essential
if it does not bound a ball in X. A properly embedded disk D in X is said
to be essential if ∂D does not bound a disk in ∂X. A properly embedded
annulus is said to be essential if it is incompressible and not boundary
parallel. A torus in X is said to be essential if it is incompressible and not
boundary parallel.

Lemma 1. For each i, V ′

i contains no essential torus, sphere, or disk whose
boundary is in Di ∪ Di+1. Also, any incompressible annulus in V ′

i whose
boundary is in Di ∪ Di+1 is either boundary parallel or can be expressed
as σ × I (possibly after a change in parameterization of ∆), where σ is a
non-trivial simple closed curve in Di ∩ ∆.

Proof. Since ki contains at least three disjoint arcs, F is a disk with at least
three holes. Let β denote the double of ∆ along ∆ ∩ (Di ∪ Di+1). Then
β = F ×S1. Now it follows from Waldhausen [7] that β contains no essential
sphere or properly embedded disk, and any incompressible torus in β can
be expressed as σ × S1 (after a possible change in parameterization of β)
where σ is a non-trivial simple closed curve in Di ∩ ∆.

Let ν denote the double of Vi along Vi ∩ (Di ∪ Di+1). Observe that
ν ∪ β is the double of V ′

i along V ′

i ∩ (Di ∪ Di+1). Now the interior of ν
is homeomorphic to Mi − (Q1 ∪ Q2 ∪ j ∪ b ∪ E). Since we saw above that
Mi − (Q1 ∪ Q2 ∪ j ∪ b ∪ E) is hyperbolic, it follows from Thurston [5, 6]
that ν contains no essential sphere or torus, or properly embedded disk or
annulus.

We see as follows that ν∪β contains no essential sphere and any essential
torus in ν ∪β can be expressed (after a possible change in parameterization
of β) as σ × S1, where σ is a non-trivial simple closed curve in Di ∩ ∆. Let



EVERY GRAPH HAS AN EMBEDDING WITH NO NON-HYPERBOLIC KNOT 7

τ be an essential sphere or torus in ν ∪ β, and let γ denote the torus ν ∩ β.
By doing an isotopy as necessary, we can assume that τ intersects γ in a
minimal number of disjoint simple closed curves. Suppose there is a curve
of intersection which bounds a disk in the essential surface τ . Let c be an
innermost curve of intersection on τ which bounds a disk δ in τ . Then δ is
a properly embedded disk in either γ or β. Since neither ν nor β contains a
properly embedded essential disk or an essential sphere, there is an isotopy
of τ which removes c from the collection of curves of intersection. Thus by
the minimality of the number of curves in τ ∩ γ, we can assume that none
of the curves in τ ∩ γ bounds a disk in τ .

Suppose that τ is an essential sphere in ν ∪ β. Since none of the curves
in τ ∩ γ bounds a disk in τ , τ must be contained entirely in either ν or β.
However, we saw above that neither ν nor β contains any essential sphere.
Thus τ cannot be an essential sphere, and hence must be an essential torus.
Since τ ∩ γ is minimal, if τ ∩ ν is non-empty, then the components of τ in
ν are all incompressible annuli. However, we saw above that ν contains no
essential annuli. Thus τ ∩ν is empty. Since ν contains no essential torus, the
essential tori τ must be contained in β. Hence τ can be expressed (after a
possible change in parameterization of β) as σ×S1, where σ is a non-trivial
simple closed curve in Di ∩ ∆.

Now we consider essential surfaces in V ′

i . Suppose that V ′

i contains an
essential sphere S. Since ν ∩β contains no essential sphere, S bounds a ball
B in ν∩β. Now the ball B cannot contain any of the boundary components
of ν ∩ β. Thus B cannot contain either Di or Di+1. Since S is disjoint from
Di ∪ Di+1, it follows that B must be disjoint from Di ∪ Di+1. Thus B is
contained in V ′

i . Hence V ′

i cannot contain an essential sphere.
We see as follows that V ′

i cannot contain an essential disk whose boundary
is in Di ∪Di+1. Let ε be a disk in V ′

i whose boundary is in Di ∪Di+1. Let ε′

denote the double of ε in ν ∪ β. Then ε′ is a sphere which meets Di ∪ Di+1

in the simple closed curve ∂ε. Since ν ∪ β contains no essential sphere,
ε′ bounds a ball B in ν ∪ β. It follows that B cannot contain any of the
boundary components of ν∪β. Thus B cannot contain any of the boundary
components of Di ∪ Di+1. Therefore, Di ∪ Di+1 intersects the ball B in a
disk bounded by ∂ε. Hence the simple closed curve ∂ε bounds a disk in
(Di ∪Di+1)∩ V ′

i , and therefore the disk ε was not essential in V ′

i . Thus, V ′

i

contains no essential disk whose boundary is in Di ∪ Di+1.
Now suppose that V ′

i contains an essential torus T . Suppose that T is not
essential in ν∪β. Then either T is boundary parallel or T is compressible in
ν ∪β. However, T cannot be boundary parallel in ν ∪β since T ⊆ V ′

i . Thus
T must be compressible in ν ∪β. Let δ be a compression disk for T in ν ∪β.
Since V ′

i contains no essential sphere or essential disk whose boundary is in
Di∪Di+1, we can use an innermost disk argument to push δ off of Di∪Di+1.
Hence T is compressible in V ′

i , contrary to our initial assumption. Thus T
must be essential in ν ∪ β. It follows that T has the form σ × S1, where
σ ⊆ Di ∩ ∆. However, since ν ∪ β is the double of V ′

i , the intersection of
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σ×S1 with V ′

i is an annulus σ× I. In particular, V ′

i cannot contain σ×S1.
Therefore, V ′

i cannot contain an essential torus.
Suppose that V ′

i contains an incompressible annulus α whose boundary
is in Di ∪Di+1. Let τ denote the double of α in ν ∪ β. Then τ is a torus. If
τ is essential in ν ∪ β, then we saw above that τ can be expressed as σ×S1

(after a possible change in parameterization of β) where σ is a non-trivial
simple closed curve in Di ∩ ∆. In this case, α can be expressed as σ × I.

On the other hand, if τ is inessential in ν ∪ β, then either τ is parallel to
a component of ∂(ν ∪ β), or τ is compressible in ν ∪ β. If τ is parallel to a
boundary component of ν ∪ β, then α is parallel to the annulus boundary
component of Wi, N(Ji), N(ei), N(Bi), or one of the boundary components
of N(ki).

Thus we suppose that the torus τ is compressible in ν ∪ β. In this case,
it follows from an innermost loop outermost arc argument that either the
annulus α is compressible in V ′

i or α is ∂-compressible in V ′

i . Since we as-
sumed α was incompressible in V ′

i , α must be ∂-compressible in V ′

i . Now
according to a lemma of Waldhausen [7], if a 3-manifold contains no es-
sential sphere or properly embedded essential disk, then any annulus which
is incompressible but boundary compressible must be boundary parallel.
We saw above that V ′

i contains no essential sphere or essential disk whose
boundary is in Di∪Di+1. Since the boundary of the incompressible annulus
α is contained in Di ∪ Di+1, it follows from Waldhausen’s Lemma that α is
boundary parallel in V ′

i . !

It follows from Lemma 1 that for any i, any incompressible annulus in V ′

i

whose boundary is in Di∪Di+1 is either parallel to an annulus in Di or Di+1

or co-bounds a solid annulus in the solid annulus Wi with ends in Di∪Di+1.
Recall that κ is a simple closed curve in Γ1 such that κ∩Wi = ki ∪ ei. Also
J = J1 ∪ · · · ∪ Jn. Let N(κ) and N(J) be regular neighborhoods of the
simple closed curves κ and J respectively, such that for each i, N(κ)∩Wi =
N(ki) ∪ N(ei), and N(J) ∩ Wi = N(Ji). Recall that V = W1 ∪ · · · ∪ Wn.
Thus cl(V − (N(C1) ∪ · · · ∪ N(Cn) ∪ N(J) ∪ N(κ)) = V ′

1 ∪ · · · ∪ V ′

n.

Proposition 1. H = cl(V − (N(C1)∪ · · ·∪N(Cn)∪N(J)∪N(κ)) contains
no essential sphere or torus.

Proof. Suppose that S is an essential sphere in H. Without loss of generality,
S intersects the collection of disks D1 ∪ · · · ∪ Dn transversely in a minimal
number of simple closed curves. By Lemma 1, for each i, V ′

i contains no
essential sphere or essential disk whose boundary is in Di ∪Di+1. Thus the
sphere S cannot be entirely contained in one V ′

i . Let c be an innermost
curve of intersection on S. Then c bounds a disk δ in some V ′

i . However,
since the number of curves of intersection is minimal, δ must be essential,
contrary to Lemma 1. Hence H contains no essential sphere.
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Suppose T is an incompressible torus in H. We show as follows that T
is parallel to some boundary component of H. Without loss of generality,
the torus T intersects the collection of disks D1 ∪ · · · ∪Dn transversely in a
minimal number of simple closed curves. By Lemma 1, for each i, V ′

i contains
no essential torus, essential sphere, or essential disk whose boundary is in
Di ∪ Di+1. Thus the torus T cannot be entirely contained in one V ′

i . Also,
by the minimality of the number of curves of intersection, we can assume
that if V ′

i ∩ T is nonempty, then it consists of a collection of incompressible
annuli in V ′

i whose boundary components are in Di ∪ Di+1. Furthermore,
by Lemma 1, each such annulus is either boundary parallel or is contained
in N(Bi) and can be expressed (after a possible change in parameterization
of N(Bi)) as σi × I for some non-trivial simple closed curve σi in Di ∩∆. If
some annulus component of V ′

i ∩T is parallel to an annulus in Di∪Di+1, then
we could remove that component by an isotopy of T . Thus we can assume
that each annulus in V ′

i ∩ T is parallel to the annulus boundary component
of one of the solid annuli Wi, N(Ji), or N(ei), or can be expressed as σi × I.
In any of these cases the annulus co-bounds a solid annulus in Wi with ends
in Di ∪ Di+1.

Consider some i, such that V ′

i ∩ T is non-empty. Hence it contains an in-
compressible annulus Ai which has one of the above forms. By the connectiv-
ity of the torus T , either there is an incompressible annulus Ai+1 ⊆ V ′

i+1∩T
such that Ai and Ai+1 share a boundary component, or there is an incom-
pressible annulus Ai−1 ⊆ V ′

i−1 ∩T , such that Ai and Ai−1 share a boundary
component, or both. We will assume, without loss of generality, that there
is an incompressible annulus Ai+1 ⊆ V ′

i+1 ∩ T such that Ai and Ai+1 share
a boundary component. Now it follows that Ai co-bounds a solid annulus
Fi in Wi with ends in Di ∪ Di+1, and Ai+1 co-bounds a solid annulus Fi+1

in Wi+1 together with two disks in Di+1 ∪ Di+2. Hence the solid annuli Fi

and Fi+1 meet in one or two disks in Di+1.
We consider several cases where Ai is parallel to some boundary compo-

nent of V ′

i . Suppose that Ai is parallel to the annulus boundary component
of the solid annulus N(Ji). Then the solid annulus Fi contains N(Ji) and is
disjoint from the arcs ki and ei. Now the arcs Ji and Ji+1 share an endpoint
contained in Fi ∩ Fi+1, and there is no endpoint of any arc of ki or ei in
Fi ∩ Fi+1. It follows that the solid annulus Fi+1 contains the arc Ji+1 and
contains no arcs of ki+1. Hence by Lemma 1, the incompressible annulus
Ai+1 must be parallel to ∂N(Ji+1). Continuing from one V ′

i to the next, we
see that in this case, T is parallel to ∂N(J).

Suppose that Ai is parallel to the annulus boundary component of the
solid annulus ∂N(ei) or one of the solid annuli in ∂N(ki). Using an argument
similar to the above paragraph, we see that Ai+1 is parallel to the annulus
boundary component of the solid annulus ∂N(ei+1) or one of the solid annuli
in ∂N(ki+1). Continuing as above, we see that in this case T is parallel to
∂N(κ).
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Suppose that the annulus Ai is parallel to the annulus boundary compo-
nent of the solid annulus Wi. Then the solid annulus Fi contains all of the
arcs of Ji, ki, and ei. It follows as above that the solid annulus Fi+1 contains
the arc Ji+1 and some arcs of ki+1 ∪ ei+1. Thus by Lemma 1, Ai+1 must
be parallel to the annulus boundary component of the solid annulus Wi+1.
Continuing in this way, we see that in this case T is parallel to ∂V .

Thus we now assume that no component of any V ′

i ∩ T is parallel to an
annulus boundary component of V ′

i . Hence if any V ′

i ∩ T is non-empty,
then by Lemma 1, V ′

i ∩T consists of disjoint incompressible annuli in N(Bi)
which can each be expressed (after a possible re-parametrization of N(Bi))
as σi × I for some non-trivial simple closed curve σi ⊆ Di ∩ ∆. Choose i
such that V ′

i ∩ T is non-empty. Since N(Bi) is a solid annulus, there is an
innermost incompressible annulus Ai of N(Bi) ∩ T . Now Ai bounds a solid
annulus Fi in N(Bi), and Fi contains more than one arc of ki. Since Ai

is innermost in N(Bi), int(Fi) is disjoint from T . Now there is an incom-
pressible annulus Ai+1 in V ′

i+1 ∩ T , such that Ai and Ai+1 meet in a circle
in Di+1. Furthermore, this circle bounds a disk in Di+1 which is disjoint
from T , and by our assumption is contained in N(Bi). Thus by Lemma 1,
the incompressible annulus Ai+1 has the form σi+1 × I for some non-trivial
simple closed curve σi+1 ⊆ Di+1 ∩ ∆ . Thus Ai+1 bounds a solid annu-
lus Fi+1 in N(Bi+1), and int(Fi+1) is also disjoint from T . We continue in
this way considering consecutive annuli to conclude that for every j, every
component Aj of T ∩ V ′

j is an incompressible annulus which bounds a solid
annulus Fj whose interior is disjoint from T .

Recall that V = W1∪· · ·∪Wn is a solid torus. Let Q denote the component
of V − T which is disjoint from ∂V . Then Q is the union of the solid annuli
Fj . Since some Fi contains some arcs of ki, the simple closed curve κ must
be contained in Q.

Recall that the simple closed curve κ contains at least three vertices of
the embedded graph Γ1. Also each vertex of κ is contained in some arc ej .
Since each such ej ⊆ κ ⊆ Q, some component Fj of Q∩Wj contains the arc
ej. By our assumption, for any V ′

i ∩T which is non-empty, V ′

i ∩T consists of
disjoint incompressible annuli in N(Bi). In particular, Vj∩T ⊆ N(Bi). Now
the annulus boundary of Fj is contained in N(Bj), and hence Fj ⊆ N(Bj).
But this is impossible since ej ⊆ Fj and ej is disjoint from N(Bj). Hence
our assumption that no component of any V ′

i ∩ T is parallel to an annulus
boundary component of V ′

i is wrong. Thus, as we saw in the previous cases,
T must be parallel to a boundary component of H. Therefore H contains
no essential annulus. !

Recall that the value of r, the simple closed curves, and the manifold H,
all depend on the particular choice of simple closed curve κ. In the following
theorem, we do not fix a particular κ, so none of the above are fixed.
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Theorem 1. Every graph can be embedded in S3 in such a way that every
non-trivial knot in the embedded graph is hyperbolic.

Proof. Let G be a graph, and let n ≥ 3 be an odd number such that G is a
minor of the complete graph on n vertices Kn. Let Γ1 be the embedding of
Kn given in our preliminary construction. Then, Γ1 contains at most finitely
many simple closed curves, κ1, . . . , κm. For each κj , we use Thurston’s
Hyperbolic Dehn Surgery Theorem [1, 5] to choose an rj in the same manner
that we chose r after we fixed a particular simple closed curve κ. Now
let R = max{r1, . . . , rm}, and let R be the value of r in Figure 1. This
determines the simple closed curves C1, . . . , Cn.

Let P = cl(V − (N(C1) ∪ · · · ∪N(Cn) ∪N(J))) where V and J are given
in our preliminary construction. Then the embedded graph Γ1 ⊆ P . For
each j = 1, . . .m, let Hj = cl(P − N(κj)). It follows from Proposition 1
that each Hj contains no essential sphere or torus. Since each Hj has more
than three boundary components, no Hj can be Seifert fibered. Hence by
Thurston’s Hyperbolization Theorem [6], every Hj is a hyperbolic manifold.

We will glue solid tori Y1, . . . , Yn+2 to P along its n + 2 boundary com-
ponents ∂V , ∂N(C1), . . . , ∂N(Cn), and ∂N(J) to obtain a closed manifold
P as follows. For each j, any gluing of solid tori along the boundary com-
ponents of P defines a Dehn filling of Hj = cl(P − N(κj)) along all of
its boundary components except ∂N(κj). Since each Hj is hyperbolic, by
Thurston’s Hyperbolic Dehn Surgery Theorem [1, 5], all but finitely many
such Dehn fillings of Hj result in a hyperbolic 3-manifold. Furthermore,
since P is obtained by removing solid tori from S3, for any integer q, if we
attach the solid tori Y1, . . . , Yn+2 to P with slope 1

q
, then P = S3. In this

case each Hj ∪ Y1 ∪ · · · ∪ Yn+2 is the complement of a knot in S3. There
are only finitely many Hj’s, and for each j, only finitely many slopes 1

q
are

excluded by Thurston’s Hyperbolic Dehn Surgery Theorem. Thus there is
some integer q such that if we glue the solid tori Y1, . . . , Yn+2 to any of the
Hj along ∂N(C1), . . . , ∂N(Cn), ∂N(J), ∂V with slope 1

q
, then we obtain

the complement of a hyperbolic knot in S3.
Let Γ2 denote the re-embedding of Γ1, obtained as a result of gluing the

solid tori Y1, . . . , Yn+2 to the boundary components of P with slope 1
q
. Now

Γ2 is an embedding of Kn in S3 such that every non-trivial knot in Γ2 is
hyperbolic. Now there is a minor G′ of the embedded graph Γ2 which is an
embedding of our original graph G, such that every non-trivial knot in G′

is hyperbolic. !
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