EXTENSION OF INCOMPRESSIBLE SURFACES ON THE BOUNDARY OF 3-MANIFOLDS

Michael Freedman, Hugh Howards and Ying-Qing Wu

Abstract

An incompressible surface F on the boundary of a compact orientable 3manifold M is arc-extendible if there is an arc γ on $\partial M-\operatorname{Int} F$ such that $F \cup N(\gamma)$ is incompressible, where $N(\gamma)$ is a regular neighborhood of γ in ∂M. Suppose for simplicity that M is irreducible, and F has no disk components. If M is a product $F \times I$, or if $\partial M-F$ is a set of annuli, then clearly F is not arc-extendible. The main theorem of this paper shows that these are the only obstructions for F to be arc-extendible.

Suppose F is a compact incompressible surface on the boundary of a compact, orientable, irreducible 3 -manifold M. Let F^{\prime} be a component of $\partial M-\operatorname{Int} F$. We say that F is arc-extendible (in F^{\prime}) if there is a properly embedded arc γ in F^{\prime} such that $F \cup N(\gamma)$ is incompressible. In this case γ is called an extension arc of F. We study the problem of which incompressible surfaces on the boundary M are arcextendible. This is useful in, for example, finding a sequence of mutually nonparallel incompressible surfaces in a 3 -manifold.

Denote by I the unit interval $[0,1]$. We say that M is a product $F \times I$ if there is a homeomorphism $\varphi: M \cong F \times I$ with $\varphi(F)=F \times 1$. Note that in this case $F^{\prime}=\partial M-\operatorname{Int} F$, and F is not arc-extendible. A surface F is diskless if it has no disk component. An incompressible surface with a disk component is always arc-extendible, unless the disk lies on a sphere component of ∂M. Thus to avoid trivial cases, we will only consider arc-extension of diskless surfaces.

Theorem 1. Let F be a diskless, compact, incompressible surface on the boundary of a compact, orientable, irreducible 3-manifold M, and let F^{\prime} be a non-annular component of $\partial M-\operatorname{Int} F$. Then either F is arc-extendible in F^{\prime}, or M is a product $F \times I$.

The proof of the theorem involve some deep results about incompressible surfaces related to Dehn surgery and 2-handle additions. It breaks down into three cases. The

[^0]case that F^{\prime} is a thrice punctured sphere is treated in Theorem 4, which shows that if the surface obtained by gluing F and F^{\prime} along one of the boundary curve of F^{\prime} is compressible for all the three boundary curves of F^{\prime}, then M must be a product. The second case is that F^{\prime} is parallel into F (see below for definition). A similar result as above holds in this case. Theorem 9 shows that in the remaining case there is an arc γ intersecting some circle C in F^{\prime} at one point, so that all but at most three Dehn twists of γ along C are extension arcs of F. Moreover, in this case the extension arc γ of F can be chosen to have endpoints on any prescribed components of ∂F^{\prime}. See Theorem 10 below.

Note that the irreducibility of M is irrelevant to the compressibility of surfaces on ∂M. However, this does make the conclusion of the theorem simpler. If we drop this assumption from the theorem, the conclusion should be changed to "Either F is arc-extendible in F^{\prime}, or there is a component F_{0} of F, and a homeomorphism $\varphi: M \cong$ $F_{0} \times I \# M^{\prime}$ for some M^{\prime}, such that $\varphi\left(F_{0}\right)=F_{0} \times 1$, and $\varphi\left(F^{\prime}\right)=F_{0} \times 0 \cup \partial F_{0} \times I$."

Given a simple closed curve α on a surface S on the boundary of M, we use $M[\alpha]$ to denote the manifold obtained by adding a 2 -handle to M along the curve α. More explicitly, $M[\alpha]$ is the union of M and a $D^{2} \times I$, with the annulus $\left(\partial D^{2}\right) \times I$ glued to a regular neighborhood $N(\alpha)$ of α on ∂M. Use $S[\alpha]$ to denote the surface in $M[\alpha]$ corresponding to S, i.e. $S[\alpha]=(S-N(\alpha)) \cup\left(D^{2} \times \partial I\right)$. The following two lemmas are very useful in dealing with incompressible surfaces. Various versions of Lemma 2 have been proved by Przytycki [Pr], Johannson [Jo], Jaco [Ja], and Scharlemann [Sch]. The lemma as stated is due to Casson and Gordon [CG].

Lemma 2. (The Handle Addition Lemma [CG].) Let α be a simple closed curve on a surface S on the boundary of an orientable irreducible 3-manifold M, such that S is compressible and $S-\alpha$ is incompressible. Then $S[\alpha]$ is incompressible in $M[\alpha]$, and $M[\alpha]$ is irreducible.

Lemma 3. (The Generalized Handle Addition Lemma.) Let S be a surface on the boundary of an orientable 3-manifold M, let γ be a 1-manifold on S, and let α be a circle on S disjoint from γ. Suppose $S-\gamma$ is compressible and $S-(\gamma \cup \alpha)$ is incompressible. If D is a compressing disk of $S[\alpha]$ in $M[\alpha]$, then there is a compressing disk D^{\prime} of $S-\alpha$ in M such that $\partial D^{\prime} \cap \gamma \subset \partial D \cap \gamma$.

Proof. This is essentially [Wu2, Theorem 1]. The theorem there stated that $\partial D^{\prime} \cap \gamma$ has no more points than $\partial D \cap \gamma$, but the proof there gives the stronger conclusion that $\partial D^{\prime} \cap \gamma \subset \partial D \cap \gamma$.

We first study the case that the surface F^{\prime} in Theorem 1 is a thrice punctured sphere. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be the boundary curves of F^{\prime}. Since F^{\prime} is a component of
$\partial M-\operatorname{Int} F$, we have $\alpha_{i} \subset \partial F$ for $i=1,2,3$. Note that if $\operatorname{Int} F \cup \operatorname{Int} F^{\prime} \cup \alpha_{i}$ is incompressible for some i, then for any essential arc γ on F^{\prime} with $\partial \gamma \subset \alpha_{i}$, the surface $F \cup N(\gamma)$ is incompressible. Hence the following theorem proves Theorem 1 in the case that F^{\prime} is a twice punctured disk. However, it should be noticed that a similar statement is false if we drop the assumption that F^{\prime} is a sphere with three holes.

Theorem 4. Let F be a diskless compact incompressible surface on the boundary of a compact, orientable, irreducible 3-manifold M, and let F^{\prime} be a component of $\partial M-\operatorname{Int} F$ which is a punctured sphere with $\partial F^{\prime}=\alpha_{1} \cup \alpha_{2} \cup \alpha_{3}$. If $\operatorname{Int} F \cup \operatorname{Int} F^{\prime} \cup \alpha_{i}$ is compressible for $i=1,2,3$, then M is a product $F \times I$.

Proof. We fix some notation. Write $\widehat{F}=F \cup F^{\prime}$. Denote by \widehat{F}_{i} the surface obtained by gluing $\operatorname{Int} F$ and $\operatorname{Int} F^{\prime}$ along α_{i}, i.e. $\widehat{F}_{i}=\operatorname{Int} F \cup \operatorname{Int} F^{\prime} \cup \alpha_{i}$. Similarly, write $\widehat{F}_{i j}=\operatorname{Int} F \cup \operatorname{Int} F^{\prime} \cup \alpha_{i} \cup \alpha_{j}$.

First notice that F^{\prime} is incompressible. This is because each simple closed curve on F^{\prime} is isotopic to one of the $\alpha_{i} \subset F$, and because F is incompressible and diskless. Since $\operatorname{Int} F \cap \operatorname{Int} F^{\prime}=\emptyset$, the surface $\operatorname{Int} F \cup \operatorname{Int} F^{\prime}$ is incompressible.

Let M^{\prime} be a maximal compression body of ∂M in M. Then a surface on the boundary of M is compressible in M if and only if it is compressible in M^{\prime}. Notice that if $M \neq M^{\prime}$, then M^{\prime} is never a product $F \times I$, so if the theorem is true for M^{\prime}, it is true for M. Hence after replacing M by M^{\prime} if necessary, we may assume without loss of generality that M is a compression body.

We claim that the curves $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are mutually nonparallel on \widehat{F}, that is, no component of F is an annulus with both boundary components on F^{\prime}. If two curves α_{1}, α_{2}, say, are parallel on \widehat{F}, then the surface $\operatorname{Int} F \cup \operatorname{Int} F^{\prime}=\widehat{F}-\alpha_{1} \cup \alpha_{2} \cup \alpha_{3}$ is incompressible if and only if $\widehat{F}_{1}=\widehat{F}-\alpha_{2} \cup \alpha_{3}$ is incompressible. However, by assumption \widehat{F}_{1} is compressible, and we have shown that $\operatorname{Int} F \cup \operatorname{Int} F^{\prime}$ is incompressible. Hence the claim follows.

Since \widehat{F}_{i} is compressible, and $\widehat{F}_{i}-\alpha_{i}=\operatorname{Int} F \cup \operatorname{Int} F^{\prime}$ is incompressible, we can apply the Handle Addition Lemma (Lemma 2) to \widehat{F}_{i} and α_{i} to conclude that after adding a 2-handle along α_{i}, the surface $\widehat{F}_{i}\left[\alpha_{i}\right]$ is incompressible in $M\left[\alpha_{i}\right]$, and $M\left[\alpha_{i}\right]$ is irreducible.

Consider the surface $\widehat{F}\left[\alpha_{1}\right]$. Notice that after adding the 2-handle, the surface F^{\prime} becomes an annulus on $\widehat{F}\left[\alpha_{1}\right]$ with boundary $\alpha_{2} \cup \alpha_{3}$, so the two curves α_{2}, α_{3} are parallel on $\widehat{F}\left[\alpha_{1}\right]$. Thus, $\widehat{F}_{1}\left[\alpha_{1}\right]=\widehat{F}\left[\alpha_{1}\right]-\alpha_{2} \cup \alpha_{3}$ being incompressible in $M\left[\alpha_{1}\right]$ implies that $\widehat{F}\left[\alpha_{1}\right]-\alpha_{2}$ is incompressible in $M\left[\alpha_{1}\right]$. With the above notation, this says that $\widehat{F}_{13}\left[\alpha_{1}\right]$ is incompressible in $M\left[\alpha_{1}\right]$.

By assumption \widehat{F}_{3} is compressible in M. Let D be a compressing disk of \widehat{F}_{3} in M. Then ∂D is disjoint from $\alpha_{1} \cup \alpha_{2}$, because $\partial D \subset \widehat{F}_{3}$. Also, ∂D is not isotopic to α_{1} in
\widehat{F}_{13}, otherwise α_{1} would bound a disk in M, contradicting the assumption that F is diskless and incompressible. We have shown that $\widehat{F}_{13}\left[\alpha_{1}\right]$ is incompressible in $M\left[\alpha_{1}\right]$, so D is not a compressing disk of $\widehat{F}_{13}\left[\alpha_{1}\right]$ in $M\left[\alpha_{1}\right]$, and hence ∂D must bound a disk in $\widehat{F}_{13}\left[\alpha_{1}\right]$. This is true if and only if ∂D is coplanar to α_{1} on \widehat{F}_{13}, that is, either ∂D is parallel to α_{1}, or it bounds a once punctured torus T in \widehat{F}_{13} which contains α_{1} as a nonseparating curve. The first possibility has been ruled out, so the second must be true. Let \widehat{T} be the torus $T \cup D$. Since we have assumed above that M is a compression body, either (i) \widehat{T} is parallel to a boundary component of M, or (ii) \widehat{T} bounds a solid torus.

If \widehat{T} is parallel to a boundary component T_{0} of M, then after adding the 2 -handle, the surface $\widehat{T}\left[\alpha_{1}\right]$ becomes a sphere which separates T_{0} from $\widehat{F}\left[\alpha_{1}\right]$, hence is a reducing sphere of $M\left[\alpha_{1}\right]$, which contradicts the irreducibility of $M\left[\alpha_{1}\right]$. Similarly, if \widehat{T} bounds a solid torus V but α_{1} is not a longitude of V, then after adding the 2 -handle the manifold would have a lens space or $S^{2} \times S^{1}$ summand, which again contradicts the irreducibility of $M\left[\alpha_{1}\right]$. (Note that $M\left[\alpha_{1}\right]$ cannot be a lens space because it has some boundary components.)

We have now shown that there is a compressing disk D of \widehat{F}_{3} in M which cuts the manifold into two pieces, one of which is a solid torus V which contains α_{1} as a longitude, but is disjoint from α_{2}. Let D_{1} be a meridian disk of V. Then $\partial D_{1} \cap \alpha_{1}$ is a single point, and ∂D_{1} is disjoint from α_{2} because ∂V is disjoint from α_{2}. Notice that ∂D_{1} is not coplanar to α_{2}, for if ∂D_{1} were parallel to α_{2} then α_{2} would also intersect α_{1}, and if ∂D_{1} would bound a once punctured torus containing α_{2} then ∂D_{1} would be a separating curve on ∂M, so it would intersect α_{1} in an even number of points, either case leading to a contradiction. Thus, after adding a 2 -handle to M along α_{2}, the disk D_{1} remains a compressing disk of $\widehat{F}\left[\alpha_{2}\right]$. Since the two curves α_{1} and α_{3} are parallel in $\widehat{F}\left[\alpha_{2}\right]$, and since D_{1} intersects α_{1} in a single point, we can isotope D_{1} to another disk D_{2} in $M\left[\alpha_{2}\right]$ so that it intersects each of α_{1} and α_{3} in a single point. We are looking for such a disk in M; however D_{2} is not necessary the one because it may intersect the attached 2-handle.

Recall that the surface \widehat{F}_{2} is compressible, but the surface $\widehat{F}_{2}-\alpha_{2}=\operatorname{Int} F \cup \operatorname{Int} F^{\prime}$ is incompressible. Hence we can apply the Generalized Handle Addition Lemma (Lemma 3, with $S=\widehat{F}, \gamma=\alpha_{1} \cup \alpha_{3}$, and $\alpha=\alpha_{2}$) to conclude that there is also a compressing disk D_{3} of \widehat{F} in M, such that ∂D_{3} is disjoint from α_{2}, and $\partial D_{3} \cap\left(\alpha_{1} \cup \alpha_{3}\right)$ is a subset of $\partial D_{2} \cap\left(\alpha_{1} \cup \alpha_{3}\right)$.

The set $\partial D_{3} \cap\left(\alpha_{1} \cup \alpha_{3}\right)$ is nonempty, otherwise, since ∂D_{3} is also disjoint from α_{2}, D_{3} would be a compressing disk of $\operatorname{Int} F \cup \operatorname{Int} F^{\prime}$, contradicting the incompressibility of $\operatorname{Int} F \cup \operatorname{Int} F^{\prime}$. Since $\alpha_{1} \cup \alpha_{2} \cup \alpha_{3}$ is separating on \widehat{F}, the curve ∂D_{3} can not intersect $\alpha_{1} \cup \alpha_{2} \cup \alpha_{3}$ at a single point. It follows that $\partial D_{3} \cap\left(\alpha_{1} \cup \alpha_{3}\right)=\partial D_{2} \cap\left(\alpha_{1} \cup \alpha_{3}\right)$, that
is, ∂D_{3} intersects each of α_{1}, α_{3} in a single point. Such a disk is called a bigon.
Denote by D_{13} the bigon D_{3} above. Interchanging the rules of α_{1} and α_{2} in the above argument, we get another compressing disk D_{23} of \widehat{F} in M, which is disjoint from α_{1}, and intersects each of α_{2}, α_{3} in a single point. By a simple innermost circle outermost arc argument, we can isotope D_{13} so that it is disjoint from D_{23}, and still has the same number of intersection points with each α_{i}. Cutting M along $D_{13} \cup D_{23}$, we get a submanifold M^{\prime} of M, in which the surface F^{\prime} becomes a disk $\widetilde{F}^{\prime} \subset F^{\prime}$, and the surface F becomes a surface $\widetilde{F} \subset F$. It is clear that one boundary component C of \widetilde{F} bounds a disk on ∂M^{\prime}, namely the union of \widetilde{F}^{\prime} and the two copies of $D_{13} \cup D_{23}$. Since F is incompressible, this curve C bounds a disk in F, so \widetilde{F} must be a disk. These disks together form a sphere boundary component of M^{\prime}. Since M is irreducible, M^{\prime} must be a 3 -ball, so it is a product $\widetilde{F} \times I$. Gluing back along D_{13} and D_{23}, we see that M is a product $F \times I$. This completes the proof of Theorem 4.

Below, F, F^{\prime} and M will be as in Theorem 1. Using Theorem 4 we may assume that F^{\prime} is not a thrice punctured sphere. A curve C^{\prime} on F^{\prime} is ∂-nonseparating if (i) C^{\prime} is not parallel to a boundary curve on F^{\prime}, and (ii) there is a proper arc γ in F^{\prime} intersecting C^{\prime} in a single point. A sub-surface G^{\prime} of F^{\prime} is parallel into F if there is a product $G^{\prime} \times I \subset M$ such that $G^{\prime}=G^{\prime} \times 0$, and $G^{\prime} \times 1 \subset F$. Similarly, a curve C^{\prime} on F^{\prime} is parallel into F if there is an embedded annulus $A \subset M$ with $\partial A=C^{\prime} \cup C$, where $C \subset F$.

Lemma 5. If F^{\prime} is compressible, then there is a ∂-nonseparating curve C^{\prime} on F^{\prime} which is not parallel into F.

Proof. Let D be a compressing disk of F^{\prime}. If ∂D is non-separating on F^{\prime}, let C^{\prime} be a curve in F^{\prime} that intersects ∂D in one point. Then C^{\prime} is nonseparating, hence ∂ nonseparating on F^{\prime}. We want to show that C^{\prime} is not parallel into F. Otherwise, let A be an annulus with $\partial A=C^{\prime} \cup C$, where $C \subset F$. Then $A \cap D$ is a proper 1-manifold on D. But $\partial(A \cap D)=(\partial A) \cap \partial D$ is a single point, which is absurd. Hence C^{\prime} is the curve required.

Now assume that ∂D is separating on F^{\prime}, cutting F^{\prime} into F_{1}^{\prime} and F_{2}^{\prime}. Choose a simple loop C_{i} on F_{i}^{\prime} as follows. If F_{i}^{\prime} is nonplanar, then there are a pair of nonseparating curves intersecting each other in one point, at least one of which is not null-homologous in M. Choose this one as C_{i}. If F_{i}^{\prime} is planar, choose C_{i} to be isotopic to a boundary curve of F^{\prime}. Note that since F is incompressible and diskless, C_{i} is not null-homotopic in M. Also notice that in both cases there is a properly embedded arc γ on one of the F_{i}^{\prime} which intersects $C_{1} \cup C_{2}$ in one point.

Now choose a band $B=I \times I$ on F^{\prime} such that $B \cap \partial D=I \times \frac{1}{2}, B \cap C_{1}=I \times 0$, $B \cap C_{2}=I \times 1$, and B is disjoint from the arc γ above. Such band exists because
γ is a nonseparating arc on F_{i}^{\prime}. Let C^{\prime} be the band sum of C_{1} and C_{2}, that is, $C^{\prime}=\left(C_{1} \cup C_{2}-I \times\{0,1\}\right) \cup(\{0,1\} \times I)$. Then C^{\prime} intersects γ in one point. Since C^{\prime} intersects ∂D essentially in two points, it is not parallel to any boundary component on F^{\prime}. Therefore C^{\prime} is ∂-nonseparating.

We want to show that C^{\prime} is not parallel into F. Using the property that C_{i} are not null-homotopic in M, one can show by an innermost circle argument that C^{\prime} is not null-homotopic in M. Now suppose that there is an annulus A in M with $\partial A=C^{\prime} \cup C$, where $C \subset F$. Since C^{\prime} is not null-homotopic in M, A is incompressible in M. By surgery along an innermost circle of $D \cap A$ one can eliminate all circle intersections of $A \cap D$. Since $\partial(A \cap D)$ consists of two points, $A \cap D$ is a single arc, which has endpoints on the same component of ∂A, hence it cuts off a disk D^{\prime} from A. Assume without loss of generality that $D^{\prime} \cap F^{\prime}$ is on F_{1}^{\prime}. Let $D^{\prime \prime}$ be the disk on D bounded by $(A \cap D) \cup(B \cap D)$, and let $B_{1}=B \cap F_{1}^{\prime}$. Then $D^{\prime} \cup D^{\prime \prime} \cup B_{1}$ is a disk with boundary C_{1}, which contradicts the fact that C_{1} is not null-homotopic in M. Therefore, C^{\prime} is not parallel into F.

Lemma 6. Suppose F^{\prime} is incompressible, and is not a thrice punctured sphere. Then either (i) there is a ∂-nonseparating curve C^{\prime} on F^{\prime} which is not parallel into F, or (ii) F^{\prime} is parallel into F.

Proof. Since F^{\prime} is not a thrice punctured sphere, one can easily find a ∂-nonseparating curve α_{0} on F^{\prime}. Assume that (i) is not true, so all ∂-nonseparating curves are parallel into F. We want to show that F^{\prime} is parallel into F.

Since α_{0} is parallel into F, the annulus $N\left(\alpha_{0}\right)$ is also parallel into F. It is an incompressible annulus because α_{0} is essential on F^{\prime} and F^{\prime} is incompressible. Among all connected incompressible surfaces in $\operatorname{Int} F^{\prime}$ which contain α_{0} and are parallel into F, choose G^{\prime} such that the complexity $\left(\chi\left(G^{\prime}\right),\left|\partial G^{\prime}\right|\right)$ is minimal in the lexical-graphic order, where $\chi\left(G^{\prime}\right)$ is the Euler characteristic of G^{\prime}, and $\left|\partial G^{\prime}\right|$ is the number of boundary components of G^{\prime}. All incompressible sub-surfaces of F^{\prime} have Euler characteristics bounded below by $\chi\left(F^{\prime}\right)$, hence such G^{\prime} does exist.

If all boundary components of G^{\prime} are parallel to some boundary components on F^{\prime}, then either G^{\prime} is contained in a collar of ∂F^{\prime}, or $F^{\prime}-\operatorname{Int} G^{\prime}=\partial F^{\prime} \times I$. The first case does not happen because G^{\prime} contains the ∂-nonseparating curve α_{0}, which by definition is not parallel to any boundary curve on F^{\prime}. In the second case F^{\prime} is isotopic to G^{\prime}, so it is parallel into F, and we are done. Hence we may assume that some boundary curve β of G^{\prime} is not parallel to any boundary curve on F^{\prime}.

We want to find a ∂-nonseparating curve α^{\prime} which intersects β essentially in one or two points. If β is nonseparating on F^{\prime}, choose α^{\prime} to be any curve on F^{\prime} that intersects β in a single point. Then α^{\prime} is nonseparating, hence ∂-nonseparating on F^{\prime}.

If β separates F^{\prime} into F_{1}^{\prime} and F_{2}^{\prime}, choose an essential $\operatorname{arc} \alpha_{i}^{\prime}$ on F_{i}^{\prime} with $\partial \alpha_{1}^{\prime}=\partial \alpha_{2}^{\prime} \subset \beta$. Moreover, if F_{i}^{\prime} is nonplanar, choose α_{i}^{\prime} to be nonseparating on F_{i}^{\prime}. Then $\alpha^{\prime}=\alpha_{1}^{\prime} \cup \alpha_{2}^{\prime}$ is ∂-nonseparating, and intersects β essentially in two points, as required.

Isotope α^{\prime} so that it intersects ∂G^{\prime} minimally. The geometric intersection number between α^{\prime} and β is 1 or 2 , so $\alpha^{\prime} \cap \partial G^{\prime} \neq \emptyset$. Since α^{\prime} is ∂-nonseparating, by our assumption above it is parallel into F, so there is an annulus A with $\partial A=\alpha^{\prime} \cup \alpha$, where $\alpha \subset F$. Isotope A rel α^{\prime} so that it intersects $\left(\partial G^{\prime}\right) \times I$ minimally. Since G^{\prime} is incompressible, $\left(\partial G^{\prime}\right) \times I$ consists of incompressible annuli in M, hence $A \cap\left(\left(\partial G^{\prime}\right) \times I\right)$ has no trivial circles. Since F and F^{\prime} are also incompressible, one can show that $A \cap\left(\left(\partial G^{\prime}\right) \times I\right)$ has no trivial arcs on A either. Therefore $A \cap\left(\left(\partial G^{\prime}\right) \times I\right)$ consists of vertical arcs $\left(\alpha^{\prime} \cap \partial G^{\prime}\right) \times I$. These arcs cut A into several squares $\alpha_{i}^{\prime} \times I$, where each α_{i}^{\prime} is the closure of a component of $\alpha^{\prime}-\partial G^{\prime}$. Choose i so that α_{i}^{\prime} lies outside of G^{\prime}. Let H be the component of $F^{\prime}-\operatorname{Int} G^{\prime}$ that contains α_{i}^{\prime}. Then $G^{\prime \prime}=G^{\prime} \cup N\left(\alpha_{i}^{\prime}\right)$ is a surface parallel into F, and $\chi\left(G^{\prime \prime}\right)=\chi\left(G^{\prime}\right)-1$. The arc α_{i}^{\prime} is essential on H, so the only case that some boundary component γ of $G^{\prime \prime}$ bounds a disk on F^{\prime} is when H is an annulus, and γ is the boundary of the disk obtained by cutting H along α_{i}^{\prime}. Since F and F^{\prime} are incompressible and M is irreducible, both ends of the annulus $\gamma \times I \subset G^{\prime \prime} \times I \subset M$ bound disks on $F \cup F^{\prime}$, which together with $\gamma \times I$ bounds a 3 -ball in M. It follows that $G^{\prime} \cup H$ is parallel into F. Since $G^{\prime} \cup H$ has the same Euler characteristic as G^{\prime} but fewer number of boundary components, this contradicts the choice of G^{\prime}. Therefore $\partial G^{\prime \prime}$ consists of essential curves on F^{\prime}. Since F^{\prime} is incompressible, $G^{\prime \prime}$ is also incompressible. Since $\chi\left(G^{\prime \prime}\right)<\chi\left(G^{\prime}\right)$, this again contradicts the choice of G^{\prime}.

Given a simple closed curve α and a proper arc γ on F^{\prime}, denote by $\tau_{\alpha}^{n} \gamma$ the curve obtained from γ by Dehn twist n times along α, and by $N\left(\tau_{\alpha}^{n} \gamma\right)$ a regular neighborhood of $\tau_{\alpha}^{n} \gamma$ on ∂M. Suppose T is a fixed torus boundary component of a 3 -manifold M. Denote by $M(r)$ the manifold obtained by Dehn filling on T along a slope r on T, that is $M(r)$ is obtained by gluing a solid torus V to M along T so that the curve r on T bounds a meridian disk on V. Denote by $\Delta\left(r_{1}, r_{2}\right)$ the minimal geometric intersection number between two slopes r_{1}, r_{2}. The following two theorems will be used in the proof of Theorem 9, which proves Theorem 1 in the case that F^{\prime} contains a ∂-nonseparating curve which is not parallel into F.

Lemma 7. ([Wu2], Theorem 1) Let T be a torus component on the boundary of a 3-manifold M, and let S be an incompressible surface on $\partial M-T$. Suppose there is no incompressible annulus in M with one boundary component on each of S and T. If S is compressible in $M\left(r_{1}\right)$ and $M\left(r_{2}\right)$, then $\Delta\left(r_{1}, r_{2}\right) \leq 1$. In particular, S is incompressible in all but at most three $M(r)$.

Lemma 8. ([CGLS], Theorem 2.4.3) Let T, S, M be as in Lemma 7, and assume further that M is irreducible. Suppose that there is an incompressible annulus A in M with one boundary component on S and the other a curve r_{0} on T. Then either S is a torus and $M=S \times I$, or S remains incompressible in all $M(r)$ with $\Delta\left(r, r_{0}\right)>1$.

Theorem 9. Let α be a ∂-nonseparating curve on F^{\prime} which is not parallel into F, and let γ be a proper arc on F^{\prime} intersecting α in one point. Then $F_{n}=F \cup N\left(\tau_{\alpha}^{n} \gamma\right)$ is incompressible for all but at most three consecutive n 's.

Proof. Let K be the knot obtained by pushing α slightly into M. There is an embedded annulus A_{0} in M with $\partial A_{0}=\alpha \cup K$. Consider the manifold $M_{K}=M-\operatorname{Int} N(K)$, where $N(K)$ is a regular neighborhood of K in M. Let T be the torus $\partial N(K)$, and let (m, l) be the meridian-longitude pair on T such that $l=A_{0} \cap T$. Denote by $M_{K}(p / q)$ the manifold obtained by Dehn filling on T along the slope $p m+q l$. The Dehn twist τ_{α}^{-n} on F^{\prime} extends to a Dehn twist of M_{K} along the annulus $A=A_{0} \cap M_{K}$, which sends the meridian slope m of T to the slope $m-n l$, so it extends to a homeomorphism $\varphi_{n}: M=M_{K}(1 / 0) \cong M_{K}(-1 / n)$, which maps the curve $\tau_{\alpha}^{n} \gamma$ to the curve γ, and hence the surface F_{n} to the surface $F_{0}=F \cup N(\gamma)$. It follows that φ_{n} is a homeomorphism of pairs

$$
\varphi_{n}:\left(M, F_{n}\right) \rightarrow\left(M_{K}(-1 / n), F_{0}\right)
$$

Therefore to prove the theorem we need only show that for all but at most three consecutive integers n, the surface F_{0} is incompressible in $M_{K}(-1 / n)$.

CLAIM 1. $T=\partial N(K)$ is incompressible in M_{K}, and M_{K} is irreducible.
If D is a compressing disk of T in M_{K}, then ∂D must intersect the meridian m of K in one point, because otherwise after the trivial Dehn filling, $M=M_{K}(1 / 0)$ would contain a lens space or $S^{2} \times S^{1}$ summand, contradicting the irreducibility of M. It follows that K, and hence α, bounds a disk in M. In this case α is parallel to a trivial curve on F, which contradicts the assumption that α is not parallel into F. Similarly, if M_{K} is reducible, then since M is irreducible, K is contained in a ball in M, so α would be null-homotopic. Using Dehn's Lemma, we see that α bounds a disk in M, hence is parallel to a trivial circle in F, contradicting the assumption that α is not parallel into F.

CLAIM 2. F_{0} is incompressible in M_{K}.
Recall that A denotes the annulus $A_{0} \cap M_{K}$. Since α intersects γ in a single point, $A \cap F_{0}$ is a single $\operatorname{arc} C$ on the boundary curve α of A. Let D be a compressing disk of F_{0}, chosen so that $|D \cap A|$, the number of components in $D \cap A$, is minimal. After disk swapping along disks on A bounded by innermost circles, we can assume that no component of $D \cap A$ is a trivial circle on A. Since T is incompressible by Claim 1, the
annulus A is also incompressible, so $D \cap A$ contains no essential circle component on A either. Hence $D \cap A$ consists of arcs only. If some arc e of $D \cap A$ is parallel to a sub-arc on $C=A \cap F_{0}$, then after boundary compressing D along a disk Δ cut off by an outermost such arc we will get two disks D_{1}, D_{2} with boundary on F_{0}, at least one of which has boundary an essential curve on F_{0}, hence is a compressing disk of F_{0}. Since $\left|D_{i} \cap A\right|<|D \cap A|$, this contradicts the minimality of $|D \cap A|$. Therefore, all arcs of $D \cap A$ are essential relative to C, in the sense that it is not parallel to an arc on C. See Figure 1(a). Notice that $|D \cap A| \neq 0$, otherwise D would be a compressing disk of F, contradicting the incompressibility of F.

Consider an outermost disk Δ on D, as shown in Figure 1(b). Then $\partial \Delta$ consists of two arcs e_{1}, e_{2}, where e_{1} is an arc on A which is essential relative to C, and e_{2} is an arc on F_{0} with interior disjoint from C. Thus $e_{2} \cap N(\gamma)$ consists of two arcs $e_{2}^{\prime}, e_{2}^{\prime \prime}$. Let t_{1} be the subarc of C connecting the two ends of $e_{2}^{\prime} \cup e_{2}^{\prime \prime}$ on C, and let t_{2} be the subarc on $\partial N(\gamma)$ connecting the other two ends of $e_{2}^{\prime} \cup e_{2}^{\prime \prime}$. Then $e_{2}^{\prime} \cup t_{1} \cup e_{2}^{\prime \prime} \cup t_{2}$ bounds a disk Δ^{\prime} on $N(\gamma)$. Now $A^{\prime}=\Delta \cup \Delta^{\prime}$ is an annulus in M, with one boundary component $e_{1} \cup t_{1}$ an essential circle on A, which is parallel to α, and the other component $e_{2} \cup t_{2}$ a curve on F. This contradicts the assumption that α is not parallel into F.

Figure 1

CLAIM 3. There is no incompressible annulus P in M_{K} with one boundary component C_{1} on F_{0} and the other component C_{2} a curve on T which is disjoint from $l=A \cap T$.

The proof is similar to that of Claim 2. Choose P so that $|P \cap A|$ is minimal. Using the fact that P is incompressible, one can show as above that $P \cap A$ has no trivial circle component. Note that since C_{2} is disjoint from $l, P \cap A$ has no arc component with endpoints on $l=A \cap T$. If $P \cap A$ had some essential circle component,choose such
a component t which is closest to l on A. By cutting and pasting along the annulus on A bounded by $t \cup l$, one would get another incompressible annulus P^{\prime} which has fewer intersection components with A. As in the proof of Claim 2 one can eliminate all arc components of $P \cap A$ which are inessential relative to $C=A \cap F_{0}$. Hence $P \cap A$ consists of arcs with ends on C and are essential relative to C, as shown in Figure 1(a). Also, since P is disjoint from $l, P \cap A$ are inessential arcs on P. Now one can use a disk Δ cut off by an outermost arc on P, proceed as in the proof of Claim 2 to get an annulus with one boundary on α and the other on F, and get a contradiction. Finally, if $P \cap A=\emptyset$ then P extends to an annulus with one boundary on α and the other on F, contradicting the assumption that α is not parallel into F. This completes the proof of Claim 3.

We now continue with the proof of Theorem 9. We have shown that F_{0} is incompressible in M_{K}. If there is no essential annulus in M_{K} with one boundary component on each of F_{0} and T, then by Lemma 7 we know that F_{0} is incompressible in $M_{K}(r)$ for all but at most three slopes r with mutual intersection number 1. In particular, it is incompressible in $M_{K}(-1 / n)$ for all but at most two consecutive n 's, so the theorem follows. Now suppose there is an essential annulus P in M_{K} with one boundary component on F_{0} and the other a curve r_{0} on T. Since F_{0} is not a closed surface, it is not a torus. Hence by Lemma 8, F_{0} remains incompressible in $M_{K}(-1 / n)$ unless $\Delta\left(-1 / n, r_{0}\right) \leq 1$. By Claim 3, r_{0} is not the longitude slope $0 / 1$, therefore, $\Delta\left(-1 / n, r_{0}\right) \leq 1$ holds for at most three consecutive integers n. This completes the proof of Theorem 9.

Proof of Theorem 1. By Theorem 4, Lemmas 5 and 6, and Theorem 9, we can now assume that F^{\prime} is incompressible and is parallel into F. We want to show that either F is arc-extendible in F^{\prime}, or M is a product $F \times I$. As in the proof of Theorem 4, we may assume without loss of generality that M is a compression body, so all closed incompressible surfaces of M are boundary parallel. Let $\alpha_{1}, \ldots, \alpha_{k}$ be the boundary curves of F^{\prime}. Let $F^{\prime} \times I$ be a product in M such that $F^{\prime}=F^{\prime} \times 0$ and $F^{\prime} \times 1 \subset F$. Write $\alpha_{i}^{1}=\alpha_{i} \times 1$, which is a curve on F isotopic to α_{i} in M.

We have assumed above that F^{\prime} is incompressible in M, so $\operatorname{Int} F \cup \operatorname{Int} F^{\prime}$ is incompressible in M. Write $\widehat{F}_{i}=\operatorname{Int} F \cup \operatorname{Int} F^{\prime} \cup \alpha_{i}$. If \widehat{F}_{i} is incompressible for some i, then $F \cup N(\gamma)$ is incompressible for any essential arc γ in F^{\prime} with endpoints on α_{i}, and we are done. (Such an arc exists because F^{\prime} is not an annulus or disk.) So assume that \widehat{F}_{i} is compressible for all i. By the Handle Addition Lemma (Lemma 2), after adding a 2-handle to M along α_{i}, the surface $\widehat{F}_{i}\left[\alpha_{i}\right]$ is incompressible, and $M\left[\alpha_{i}\right]$ is irreducible. Notice that since F^{\prime} is incompressible, the curve $\alpha_{i}^{1}=\alpha_{i} \times 1$ in F is essential on F. But after adding the 2-handle, α_{i}^{1} bounds a disk in $M\left[\alpha_{i}\right]$, so it must also bound a
disk on $\widehat{F}_{i}\left[\alpha_{i}\right]$ because $\widehat{F}_{i}\left[\alpha_{i}\right]$ is incompressible. By definition $\widehat{F}_{i}\left[\alpha_{i}\right]$ is obtained from $\left(\operatorname{Int} F \cup \operatorname{Int} F^{\prime}\right)-\operatorname{Int} N\left(\alpha_{i}\right)$ by capping off the two copies of α_{i} with disks, hence $\alpha_{i}^{1} \cup \alpha_{i}$ bounds an annulus A_{i} on F_{i}. Denote by A_{i}^{\prime} the annulus $\alpha_{i} \times I \subset F^{\prime} \times I \subset M$. Then $T_{i}=A_{i} \cup A_{i}^{\prime}$ is a torus in M. Since we have assumed above that M is a compression body, either T_{i} bounds a solid torus V_{i}, or it is parallel to some torus component of ∂M. However, since $M\left[\alpha_{i}\right]$ is irreducible, one can show as in the proof of Theorem 4 that V_{i} is a solid torus, and α_{i} is a longitude of V_{i}. This is true for all i. It is now easy to see that M is a product $F \times I$.

The following theorem supplements Theorem 1. It says that in most case there are extension arcs with endpoints on any prescribed boundary compponents of F^{\prime}.

Theorem 10. Let F, F^{\prime}, M be as in Theorem 1. Suppose M is not a product $F \times I$, and suppose F^{\prime} is not parallel into F and is not a thrice punctured sphere. Then it contains an extension arc γ of F with endpoints on any prescribed components of ∂F^{\prime}.

Proof. If F^{\prime} is nonplanar, then by the proof of Lemmas 5 and 6, there is a ∂ nonseparating circle α (denoted by C^{\prime} there) on F^{\prime} which is not parallel into F, and is actually nonseparating on F^{\prime}. Hence given any boundary components $\partial_{1}, \partial_{2}$ of F^{\prime}, (possibly $\partial_{1}=\partial_{2}$), there is an arc γ with endpoints on ∂_{1} and ∂_{2}, intersecting α in one point. By Theorem 9, for all but at most three integers n, the $\operatorname{arc} \gamma_{n}=\tau_{\alpha}^{n} \gamma$ is an extension arc of F.

Now suppose F^{\prime} is planar with $\left|\partial F^{\prime}\right| \geq 4$. First assume that $\partial_{1}, \partial_{2}$ are distinct boundary components of F^{\prime}. By the proof of Lemmas 5 and 6 , the curve α is a band sum of two boundary components of F^{\prime}. From the proofs one can see that we can always choose α to be the band sum of ∂_{1} and ∂_{3}, with $\partial_{3} \neq \partial_{1}, \partial_{2}$. Hence there is an arc γ from ∂_{1} to ∂_{2} intersecting α in one point. We can then apply Theorem 9 to get an extension arc γ_{n} with one endpoint on each of ∂_{1} and ∂_{2}.

We now proceed to find an extension arc in F^{\prime} with boundary on the same component ∂_{1} of ∂F^{\prime}. By the proof of Lemmas 5 and 6 , we can choose the curve α above to be the band sum of of ∂_{2} and ∂_{3}, with $\partial_{1} \neq \partial_{2}, \partial_{3}$. Recall that α is not parallel into F. Choose an arc γ as follows. Let ∂_{2}^{\prime} be a curve on F^{\prime} parallel to ∂_{2}, let γ^{\prime} be an arc connecting ∂_{2}^{\prime} to ∂_{1} intersecting α in one point, and let Q be the sub-surface $N\left(\gamma^{\prime} \cup \partial_{2}^{\prime}\right)$ of F^{\prime}. Then γ is the closure of the arc component of $\partial Q \cap \operatorname{Int} F^{\prime}$, that is, γ is the arc component of the frontier of Q in F^{\prime}, see Figure 2 below. Consider the surface $F_{0}=F \cup N(\gamma)$, and observe that F_{0} is isotopic to the surface $F \cup Q$. After Dehn twist along α, it is isotopic to the surface $F \cup N\left(\tau_{\alpha}^{n} \gamma\right)$; hence to show that all but at most three $\tau_{\alpha}^{n} \gamma$ are extension arcs of F in F^{\prime}, we need only show that $F \cup Q$ is incompressible after all but at most three Dehn twist along α. Since $F \cup Q$ intersects α
in a single arc, the argument in the proof of Theorem 9 is still valid, with the following easy modifications. We use the notations in that proof.

Figure 2

The proof of Claim 2 needs the following modifications. (i) The arc e_{2} on the boundary of the outermost disk Δ may be on Q. In this case, notice that the other arc e_{1} on ∂D is isotopic to an arc α_{1} on α, and $e_{2} \cup \alpha_{1}$ is isotopic in F^{\prime} to the curve ∂_{3}, so the fact that $e_{1} \cup e_{2}$ bounds a disk Δ would imply that ∂_{3} bounds a disk. Since ∂_{3} is also on ∂F, this contradicts the fact that F is incompressible and diskless. (ii) The compressing disk D of $F \cup Q$ could be disjoint from the annulus A. But since F is incompressible, this would imply that ∂D lies on Q, hence is isotopic to ∂_{2}, which would imply that ∂_{2} bounds a disk, again contradicting the assumption that F is incompressible and diskless.

The proof of Claim 3 applies to show that the annulus P there can be modified to be disjoint from the annulus A. Then notice that the component of ∂P on $F \cup Q$ is either in F, or in Q and hence parallel to ∂_{2}. Since $\partial_{2} \subset F$, in either case P can be extended to an annulus with one boundary component on α and the other on F, which contradicts the assumption that α is not parallel into F.

The rest part of the proof of Theorem 9 follows verbatim to show that $F \cup Q$ is incompressible after all but at most three Dehn twist along α.

Remark. Theorem 10 is not true if F^{\prime} is a thrice punctured sphere.

References

[CG] A. Casson and C. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), 275-283. [CGLS] M. Culler, C. Gordon, J. Luecke and P. Shalen, Dehn surgery on knots, Annals Math. 125 (1987), 237-300.
[Ja] W. Jaco, Adding a 2-handle to 3-manifolds: an application to property R, Proc. Amer. Math. Soc. 92 (1984), 288-292.
[Jo] K. Johannson, On surfaces in one-relator 3-manifolds, Low-Dimensional Topology and Kleinian Groups, London Math. Soc. Lecture Notes Ser., vol. 112, 1984, pp. 157-192.
[Pr] J. Przytycki, Incompressibility of surfaces after Dehn surgery, Michigan Math. J. 30 (1983), 289-308.
[Sch] M. Scharlemann, Outermost forks and a theorem of Jaco., Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982), Contemp. Math., vol. 44, pp. 189-193.
[Wu1] Y-Q. Wu, A generalization of the handle addition theorem, Proc. Amer. Math. Soc. 114 (1992), 237-242.
[Wu2] _, Incompressibility of surfaces in surgered 3-manifolds, Topology 31 (1992), 271-279.

Michael Freedman Department of Mathematics, UC San Diego, La Jolla, CA 92093 E-mail address: freedman@math.ucsd.edu

Hugh Howards Department of Mathematics, UC San Diego, La Jolla, CA 92093
E-mail address: howards@math.ucsd.edu

Ying-Qing Wu Department of Mathematics, University of Iowa, Iowa City, IA 52242; and

MSRI, 1000 Centennial Drive, Berkeley, CA 94720-5070
E-mail address: wu@math.uiowa.edu

[^0]: 1991 Mathematics Subject Classification. Primary 57N10..
 Freedman was partially supported by an NSF grant. Wu's research at MSRI was supported in part by NSF grant \#DMS 9022140.

