INTRINSIC CHIRALITY OF GRAPHS IN 3-MANIFOLDS

ERICA FLAPAN, HUGH HOWARDS

Abstract

The main result of this paper is that for every closed, connected, orientable, irreducible 3-manifold M, there is an integer n_{M} such that any abstract graph with no automorphism of order 2 which has a 3 -connected minor whose genus is more than n_{M} has no achiral embedding in M. By contrast, the paper also proves that for every graph γ, there are infinitely many closed, connected, orientable, irreducible 3 -manifolds M such that some embedding of γ in M is pointwise fixed by an orientation reversing involution of M.

1. Introduction

The study of chirality originally developed as a tool to help predict and explain molecular behavior. In particular, a molecule is said to be chiral if it can chemically interconvert with its mirror image at room temperature, and otherwise it is said to be achiral. Since small molecules are normally rigid, whether or not a small molecule is chiral can be determined from a geometric model. However, a molecule which is flexible or can rotate around specific bonds can be achiral even if a rigid model of it is geometrically distinct from its mirror image. The existence of such non-rigid molecules was the original motivation for studying chirality of spatial graphs from a topological perspective. However, the topological chirality of spatial graphs is interesting to consider whether or not they represent molecular structures.

In particular, we say that a graph embedded in S^{3} is achiral, if there is an orientation reversing homeomorphism of S^{3} taking the graph to itself. Otherwise, we say the embedded graph is chiral. We can think of knots with vertices as examples of graphs where some embeddings are chiral and others are not. By contrast, there are abstract graphs which have the property that no matter how they are embedded in S^{3}, they are topologically chiral. In this case, the graph is said to be intrinsically chiral in S^{3}. In chemical terms, a molecule would be intrinsically chiral if it and all of its topological stereoisomers are chiral. Molecular Möbius ladder with an odd number of rungs (at least three) were the first molecules that were shown to be intrinsically chiral [2]. More generally, the following theorem provides a method

[^0]for showing that many graphs (molecular and otherwise) are intrinsically chiral in S^{3}.

Theorem 1. [3] Every non-planar abstract graph γ with no automorphism of order 2 is intrinsically chiral in S^{3}.

It makes sense to call such graphs intrinsically chiral because the chirality of such a graph depends only on the abstract graph and not on the embedding of the graph in S^{3}. However, we can define chirality for graphs embedded in any 3 -manifold, and ask whether a graph which is intrinsically chiral in S^{3} would be intrinsically chiral in a different 3 -manifold. We prove the following theorem which shows that no graph can be intrinsically chiral in every 3 -manifold.

Theorem 2. For every graph γ, there are infinitely many closed, connected, orientable, irreducible 3-manifolds M such that some embedding of γ in M is pointwise fixed by an orientation reversing involution of M.

The proof of this result can be thought of as a generalization of the fact that every planar graph has an embedding in S^{3} which is pointwise fixed by a reflection of S^{3}. On the other hand, our main result is the following generalization of Theorem 1, which shows that for any "nice" 3-manifold M, any 3-connected abstract graph with large enough genus and no involution is intrinsically chiral in M.

Theorem 3. For every closed, connected, orientable, irreducible 3-manifold M, there is an integer n_{M} such that any abstract graph with no automorphism of order 2 which has a 3-connected minor λ with genus $(\lambda)>n_{M}$ is intrinsically chiral in M.

Note that by contrast with our result about embeddings of graphs in 3manifolds without boundary, Ikeda [9] has shown in the theorem below that for "nice" 3-manifolds with aspherical boundary, any abstract graph with large enough genus which has a certain type of involution has an achiral hyperbolic embedding in the double of the manifold.

Ikeda's Theorem. [9] Let M be a compact, connected, orientable, 3-manifold with non-empty aspherical boundary. Then there is an integer n_{M} such that for any abstract graph λ with genus $(\lambda)>n_{M}$ and no vertices of valence 1 , any automorphism of order 2 of λ that does not restrict to an orientation preserving automorphism of a cycle in λ can be induced by an orientation reversing involution of some hyperbolic embedding of λ in the double of M.

In Section 2, we prove Theorem 1. In Section 3, we determine the value of n_{M} for for a given manifold M. In Section 4, we prove Theorem 3 making use of a proposition, which we then prove in Section 5.

2. Achiral embeddings

The goal of this section is to prove Theorem 2. To that end, we prove the following proposition. Note that we use $\operatorname{dim}_{\mathbb{Z}}\left(H_{1}(M, \mathbb{Z})\right)$ to denote the dimension of the first \mathbb{Z}-homology group of M and $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)$ to denote the dimension of the first \mathbb{Z}_{2}-homology group of M.

Proposition 1. Let S be a closed, orientable surface. Then for infinitely many closed, connected, orientable, irreducible 3-manifolds Q such that $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(Q, \mathbb{Z}_{2}\right)\right)=\operatorname{genus}(S)$, there is an embedding of S in Q which is pointwise fixed by an orientation reversing involution of Q.

The proof of Proposition 1 will make use of the idea of a disk-busting curve, which is a simple closed curve in a handlebody that intersects every essential, properly embedded disk in the handlebody. For example, a core of a solid torus is disk busting in the solid torus. For a genus 2 handlebody with fundamental group generated by a and b an example of a disk-busting curve is one that includes into the fundamental group of the handlebody as $a b a b^{-1}$ (see Figure 1). All handlebodies have disk-busting curves and Richard Strong [16] gives an algorithm to recognize them. For more on disk-busting curves see [16] or [8].

Figure 1. A disk-busting curve in a genus 2 handlebody.

Proof. Let g be the genus of a closed orientable surface S. Let M be the manifold obtained by gluing genus g handlebodies V_{1} and V_{2} together along S in such a way that there is an orientation reversing involution h interchanging V_{1} and V_{2} which pointwise fixes the surface S. Now M is a closed, connected, orientable 3-manifold M such that $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)=\operatorname{genus}(S)$. However, M is reducible.

In order to create an irreducible 3-manifold, we first remove neighborhoods N_{1} and N_{2} of identical disk busting curves in the interiors of the handlebodies V_{1} and V_{2} such that N_{1} and N_{2} are interchanged by the involution h. Note that since $\operatorname{cl}\left(M-\left(S \cup N_{1} \cup N_{2}\right)\right)$ consists of two identical handlebodies from which neighborhoods of disk busting curves have been removed, the inclusion of S in each component of $\operatorname{cl}\left(M-\left(S \cup N_{1} \cup N_{2}\right)\right)$ is incompressible. Now we sew in identical knot complements Q_{1} and Q_{2} along ∂N_{1} and ∂N_{2} respectively so that the Seifert surfaces of the Q_{i} are glued in where the meridians of the N_{i} were.

Let Q denote the 3-manifold obtained in this way. Then the restriction $h \mid c \mathrm{cl}\left(M-\left(S \cup N_{1} \cup N_{2}\right)\right)$ can be extended to an orientation reversing involution of Q that pointwise fixes S. Note that the components of $\operatorname{cl}\left(Q-\left(S \cup \partial Q_{1} \cup\right.\right.$ $\left.\partial Q_{2}\right)$) that contain S are homeomorphic to the corresponding components of $\operatorname{cl}\left(M-\left(S \cup \partial N_{1} \cup \partial N_{2}\right)\right)$.
Claim 1: The surfaces $S, \partial Q_{1}$, and ∂Q_{2} are each incompressible in Q
Proof of Claim 1: Assume one of $S, \partial Q_{1}$, or ∂Q_{2} is compressible in Q. Then there is a compressing disk D for one of these surfaces that meets $S \cup \partial Q_{1} \cup \partial Q_{2}$ transversally in a minimal number of components. If the interior of D intersects one of the surfaces $S, \partial Q_{1}$, or ∂Q_{2}, then an innermost loop on D bounds a compressing disk for that surface whose interior is disjoint from the other surfaces. This implies that one of $S, \partial Q_{1}$, or ∂Q_{2} is compressible in a component of $\operatorname{cl}\left(Q-\left(S \cup \partial Q_{1} \cup \partial Q_{2}\right)\right)$. However, this is a contradiction because both Q_{i} and $\operatorname{cl}\left(V_{i}-N_{i}\right)$ have incompressible boundary.

Claim 2: Q is irreducible.
Proof of Claim: Let F be a sphere in Q and assume without loss of generality that F intersects $S \cup \partial Q_{1} \cup \partial Q_{2}$ transversally in a minimal number of components. If F intersects any of $\partial Q_{1}, \partial Q_{2}$, or S, then there is an innermost loop on F bounding a disk D that is a compressing disk for ∂Q_{1}, ∂Q_{2}, or S in $\operatorname{cl}\left(Q-\left(S \cup \partial Q_{1} \cup \partial Q_{2}\right)\right)$. But this violates Claim 1. Thus F is contained in some Q_{i} or $V_{i}-Q_{i}$. However, both the knot complements Q_{i} and the $V_{i}-Q_{i}$ are irreducible. Therefore Q is irreducible.

Now, recall that $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)=\operatorname{genus}(S)$. Also, it can be seen using a Meyer-Vietoris sequence that replacing the handlebodies N_{1} and N_{2} by the knot complements Q_{1} and Q_{2} does not change H_{1}, since a meridional disk of N_{i} is replaced by a Seifert surface in Q_{i}. Thus $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(Q, \mathbb{Z}_{2}\right)\right)=\operatorname{genus}(S)$, and hence Q has the properties required by the proposition.

In order to prove that we can find infinitely many such 3 -manifolds Q, we first show as follows that if Q_{i} is the complement of a connected sum of distinct knots $K_{1} \# K_{2} \# \ldots \# K_{n}$, then Q contains at least $2 n$ disjoint nonparallel incompressible tori. The first such torus is a boundary parallel torus in Q_{i}. The second such torus is a follow-swallow torus that swallows K_{1} and follows the other $n-1$ tori. The third swallows $K_{1} \# K_{2}$ and follows the other $n-2$ and so on, each time swallowing one more knot and following one less until the $n^{\text {th }}$ torus swallows all of the K_{j} with $j \neq n$. Since we have n such disjoint tori in each Q_{i}, this gives us $2 n$ such disjoint tori in Q. These tori cannot be parallel to each other since they bound distinct knot complements in Q_{i}.

To see that these $2 n$ tori are incompressible in Q, suppose there is a compressing disk for one of the tori that intersects $\partial Q_{1} \cup \partial Q_{2} \cup S$ transversally in a minimal number of components. An innermost loop on the disk would be a compressing disk for $\partial Q_{1}, \partial Q_{2}$ or S, again contradicting Claim 1 .

Thus the torus would have to be compressible in one of the Q_{i}. But it is well known that follow-swallow tori are incompressible in knot complements, so the $2 n$ tori must be incompressible in Q as well.

Thus Q contains $2 n$ disjoint, non-parallel, incompressible tori. On the other hand, it follows from Kneser-Haken finiteness, that for a given compact, orientable manifold, such as Q, there is some finite constant t_{1} such that Q cannot contain more than t_{1} disjoint closed, non-parallel, incompressible surfaces (see, for example, Proposition 1.7 in [5]). Thus $t_{1}>2 n$.

To get a manifold Q^{\prime} which is not homeomorphic to Q, we replace each Q_{i} by the complement of a knot that is the connected sum of more than $\frac{1}{2} t_{1}$ knots. Now Q^{\prime} will contain t_{2} disjoint, non-parallel, incompressible tori with $t_{2}>t_{1}$, and thus Q^{\prime} is distinct from Q. By repeating this process, we can create an infinite sequence of such manifolds each containing more disjoint, non-parallel, incompressible tori than the previous manifold did.

Since every graph embeds in a closed orientable surface, the following theorem is an immediate consequence of Proposition 1.

Theorem 2. For every graph γ, there are infinitely many closed, connected, orientable, irreducible 3-manifolds M such that some embedding of γ in M is pointwise fixed by an orientation reversing involution of M.

3. Determining the value of n_{M} for a given M

Let M be a closed, connected, orientable, irreducible 3-manifold. We will associate several constants with M that will help us determine the value of n_{M}. First, observe that we can apply the characteristic decomposition theorem of Jaco-Shalen [10] and Johannson [12] to M to find a unique minimal family Ω of disjoint incompressible tori such that the closures of the components obtained by splitting M along Ω are atoroidal or Seifert fibered. If $\Omega \neq \emptyset$ let $t=|\Omega|$, and otherwise let $t=1$.

For each Seifert fibered component M_{i}, let g_{i} denote the genus of the base surface F_{i}, let b_{i} denote the number of boundary components of F_{i}, and let $w_{i}=\max \left\{b_{i}+3 g_{i}-3,1\right\}$. By using a standard pants decomposition argument (see, for example, [6]), we see that the surface F_{i} can contain at most w_{i} disjoint, non-parallel, non-boundary parallel, essential circles. This implies that M_{i} contains at most w_{i} disjoint, non-parallel, non-boundary parallel, incompressible vertical tori (see Figure 2). Let $w=\sum w_{i}$ taken over all Seifert fibered components M_{i}. Then M contains at most w disjoint, non-parallel, non-boundary parallel, incompressible tori which are vertical in some Seifert fibered component.

Now let T be an incompressible torus in M. Then T can be isotoped to be disjoint from the tori in the characteristic family Ω (see for example [4]). Thus without loss of generality, we assume that T is contained in either an atoroidal or a Seifert fibered component of $M-\Omega$. If T is in an atoroidal

Figure 2. A vertical torus in a Seifert fibered component.
component, then T is parallel to a torus in Ω. Hence there are at most $t=|\Omega|$ disjoint, non-parallel, such tori in M. If T is in a Seifert fibered component, then by Waldhausen [18], T must be parallel to either a vertical or horizontal torus. As we saw above there are at most w disjoint, nonparallel, such tori which are vertical in some Seifert fibered component. If T is parallel to a horizontal torus in some Seifert fibered component, then M is Seifert fibered with base surface a torus. In this case, there is only one such torus, and $w=w_{i}=\max \left\{b_{i}+3 g_{i}-3,1\right\}=1$. Thus there are at most w disjoint, non-parallel tori in M which are either parallel to either a vertical or horizontal torus in some Seifert fibered component. Hence altogether, M has at most $N_{M}=t+w$ disjoint, non-parallel incompressible tori. Note that since $w \geq 1$ and $t \geq 1$, we have $N_{M} \geq 2$.

Now for any closed, orientable, connected, irreducible 3-manifold M, we define $n_{M}=\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)+N_{M}$. We will refer to the constants n_{M} and N_{M} in the statements and proofs of Theorem 3 and Proposition 2.

4. Intrinsic Chirality

The goal of this section is to prove our main result. We begin with the following definition.

Definition 3. Let the genus of a graph γ be defined as the minimum value of

$$
\frac{2-\chi(S)}{2}=\frac{\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(S, \mathbb{Z}_{2}\right)\right)}{2}
$$

over any surface S in which γ embeds.
It is worth pointing out that the genus of a non-orientable surface is not consistently defined in the literature. Some papers use our preferred definition, but others define the projective plane as having genus 1 instead of $\frac{1}{2}$.

In the following proposition and subsequent theorem, we refer to the values of N_{M} and n_{M} which were defined in Section 3.

Proposition 2. Let γ be a 3-connected graph with genus at least 2, and let Γ be an embedding of γ in a closed, connected, orientable, irreducible 3manifold M such that (M, Γ) has an orientation reversing homeomorphism fixing every vertex of Γ.

Then there is an embedding Γ^{\prime} of γ in a closed, connected, orientable 3-manifold M^{\prime} such that $\left(M^{\prime}, \Gamma^{\prime}\right)$ has an orientation reversing involution pointwise fixing Γ^{\prime} and $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right) \leq n_{M}$

The point of this proposition is that if we have an embedding Γ of a graph γ in a manifold M such that (M, Γ) has an orientation reversing homeomorphism, then we can find another manifold M^{\prime} and an embedding Γ^{\prime} of γ in M^{\prime} such that $\left(M^{\prime}, \Gamma^{\prime}\right)$ has an orientation reversing involution. Furthermore, even though M^{\prime} might be homologically more complicated than M, there is a bound on $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right)$ which depends only on M and not on the graph γ or a particular embedding of γ in M.

Proposition 2 will be proved in the next section. We now prove Theorem 3 (restated below) by making use of Proposition 2 together with the following result of Kobayashi.
Kobayashi's Theorem. [13] Let X be a closed, orientable, 3-manifold admitting an orientation reversing involution h. Then

$$
\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(\operatorname{fix}(h), \mathbb{Z}_{2}\right)\right) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(X, \mathbb{Z}_{2}\right)\right)+\operatorname{dim}_{\mathbb{Z}}\left(H_{1}(X, \mathbb{Z})\right)
$$

Theorem 3. For every closed, connected, orientable, irreducible 3-manifold M, there is an integer n_{M} such that any abstract graph with no automorphism of order 2 which has a 3-connected minor λ with $\operatorname{genus}(\lambda)>n_{M}$ is intrinsically chiral in M.

Proof. Let γ be a graph with no automorphism of order 2. Suppose for the sake of contradiction that γ has an achiral embedding Γ in the manifold M. Let n_{M} and N_{M} be the constants associated with M that were defined in Section 3. Let λ be a 3 -connected minor of γ. We will now show that λ satisfies the inequality

$$
\operatorname{genus}(\lambda) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)+N_{M}=n_{M} .
$$

First observe that if $\operatorname{genus}(\lambda) \leq 1$, then the above inequality is immediate since we saw in Section 3 that $N_{M} \geq 2$. Thus we assume that genus $(\lambda) \geq 2$.

Since Γ is an achiral embedding of γ in M, there is an orientation reversing homeomorphism f of the pair (M, Γ). Let φ denote the automorphism that f induces on the graph Γ. Now even though f does not necessarily have finite order, φ has finite order because Γ has a finite number of vertices. Hence we can express the order of φ as $2^{r} q$, where $r \geq 0$ and q is odd. Since f is orientation reversing and q is odd, $g=f^{q}$ is also an orientation reversing homeomorphism of (M, Γ). Now it follows that g induces the automorphism φ^{q} on Γ and $\operatorname{order}\left(\varphi^{q}\right)=2^{r}$. In particular, $g^{2^{r}}$ fixes every vertex of Γ.

If $r \geq 1$, then $g^{2^{r-1}}$ would induce an order two automorphism on Γ. As we assumed that no such automorphism exists, we must have $r=0$. Thus $g=g^{2^{r}}$ is an orientation reversing homeomorphism of (M, Γ) which fixes every vertex of Γ.

Now let λ be a 3 -connected minor of the abstract graph γ. Then by deleting and/or contracting some edges of the embedding Γ of γ in M, we obtain an embedding Λ of λ in M. Furthermore, by composing the homeomorphism g with an isotopy in a neighborhood of each edge that was contracted, we obtain an orientation reversing homeomorphism of (M, Λ) which fixes every vertex of Λ.

Since λ is a 3 -connected graph with genus $(\lambda) \geq 2$, we can now apply Proposition 2 to get an embedding Λ^{\prime} of λ in a 3 -manifold M^{\prime} such that $\left(M^{\prime}, \Lambda^{\prime}\right)$ has an orientation reversing involution h pointwise fixing Λ^{\prime} and

$$
\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right) \leq n_{M}=\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)+N_{M}
$$

Let F be the component of the fixed point set fix (h) containing Λ^{\prime}, and let $x \in \Lambda^{\prime}$. We put a metric d on M^{\prime}, and define a new metric d^{\prime} by $d^{\prime}(x, y)=d(x, y)+d(h(x), h(y))$. Then any neighborhood of x with respect to the metric d^{\prime} will be setwise invariant under h. Now we can pick a neighborhood $N(x)$ with respect to d^{\prime} such that $N(x)$ is homeomorphic to a ball. Then by Smith theory [15], since $h \mid N(x)$ is an orientation reversing involution of the ball $N(x)$, the fix point set of $h \mid N(x)$ is either a single point or a properly embedded disk. Since $N(x) \cap \Lambda$ contains more than one point, fix $(h \mid N(x))$ is a properly embedded disk, and hence F is a closed surface. Thus

$$
\begin{gathered}
\operatorname{genus}(\lambda) \leq \operatorname{genus}(F)=\frac{2-\chi(F)}{2} \\
=\frac{\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(F, \mathbb{Z}_{2}\right)\right)}{2} \leq \frac{\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(\operatorname{fix}(h), \mathbb{Z}_{2}\right)\right)}{2} .
\end{gathered}
$$

Hence we have the inequality

$$
2 \operatorname{genus}(\lambda) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(\operatorname{fix}(h), \mathbb{Z}_{2}\right)\right.
$$

Also, since h is an orientation reversing involution and M^{\prime} is a closed orientable manifold, we can apply Kobayashi's Theorem [13] to obtain the inequality

$$
\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(\operatorname{fix}(h), \mathbb{Z}_{2}\right)\right) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right)+\operatorname{dim}_{\mathbb{Z}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}\right)\right)
$$

It follows that

$$
\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(\operatorname{fix}(h), \mathbb{Z}_{2}\right)\right) \leq 2 \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right)
$$

Combining the above inequalities, we now have

$$
\operatorname{genus}(\lambda) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right)
$$

But M^{\prime} was given by Proposition 2 such that

$$
\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)+N_{M}
$$

Hence we obtain the required inequality

$$
\operatorname{genus}(\lambda) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)+N_{M}=n_{M}
$$

It now follows that if γ has a 3 -connected minor whose genus is greater than n_{M}, then γ must be intrinsically chiral in M.

5. Proof of Proposition 2

For the sake of completeness, we begin by proving the following elementary lemma that we will use in the proof of Proposition 2.

Lemma 1. Let S be a punctured sphere with $n \geq 3$ boundary components $\left\{c_{1}, c_{2} \ldots c_{n}\right\}$. Let $\left\{s_{1}, s_{2} \ldots s_{m}\right\}$ be disjoint embedded loops on S each parallel to some c_{i} and let $\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$ be disjoint annuli on $S-\bigcup_{i=1}^{m} s_{i}$. Then the closure of some component of $S-\left(\bigcup_{i=1}^{m} s_{i} \cup \bigcup_{i=1}^{t} \alpha_{i}\right)$ is a sphere with at least three holes.

Proof. First note that $\operatorname{cl}\left(S-\bigcup_{i=1}^{m} s_{i}\right)$ consists of n annuli and a sphere with $n \geq 3$ holes. Call the closure of this sphere with holes F_{1}. Any annuli α_{i} that are not in F_{1} are thrown out of the collection $\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$ to get a possibly smaller collection $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$. Now it suffices to prove that the closure of some component of $F_{1}-\left(\bigcup_{i=1}^{m} s_{i} \cup \bigcup_{i=1}^{r} \alpha_{i}\right)$ is a sphere with at least three holes.

Observe that the total number of boundary components of $\operatorname{cl}\left(F_{1}-\alpha_{1}\right)$ is $n+2$. There are three possible cases for these components. First, one component of $\operatorname{cl}\left(F_{1}-\alpha_{1}\right)$ could be a disk D_{1}. In this case, the total number of boundary components of $\operatorname{cl}\left(F_{1}-\left(\alpha_{1} \cup D_{1}\right)\right)$ is $n+1 \geq 3$. Second, one component of $\operatorname{cl}\left(F_{1}-\alpha_{1}\right)$ could be an annulus A_{1}, in which case the total number of boundary components of $\operatorname{cl}\left(F_{1}-\left(\alpha_{1} \cup A_{1}\right)\right)$ is still $n \geq 3$. Finally, if neither component of $\operatorname{cl}\left(F_{1}-\alpha_{1}\right)$ is a disk or an annulus, then α_{1} splits F into two punctured spheres each with at least three boundary components. Let F_{2} denote the closure of one of these spheres with at least three holes.

We repeat the above paragraph inductively to conclude that the closure of some component of $S-\left(\bigcup_{i=1}^{m} s_{i} \cup \bigcup_{i=1}^{t} \alpha_{i}\right)$ is a sphere with at least three holes.

We will also use the well known "Half Lives, Half Dies" Theorem, which we state below. See [7] or [5] for a proof of this theorem.

Theorem 4. (Half Lives, Half Dies) Let M be a compact orientable 3manifold. Then the following equation holds with any field coefficients

$$
\operatorname{dim}\left(\operatorname{Kernel}\left(H_{1}(\partial M) \rightarrow H_{1}(M)\right)\right)=\frac{1}{2} \operatorname{dim} H_{1}(\partial M)
$$

Corollary 1. Let M be a manifold which has a torus boundary component T. Then for any pair of generators a and b of $H_{1}\left(T, \mathbb{Z}_{2}\right)$, at least one of a and b is non-trivial in $H_{1}\left(M, \mathbb{Z}_{2}\right)$.

Proof. Suppose for the sake of contradiction that the generators a and b are both trivial in $H_{1}\left(M, \mathbb{Z}_{2}\right)$. Attach handlebodies to all boundary components of M except T to form a new manifold J with a single boundary component. Then a and b are both trivial in $H_{1}\left(J, \mathbb{Z}_{2}\right)$. Since a and b generate the homology of the only boundary component of J, we see that $\operatorname{dim}\left(\operatorname{Kernel}\left(H_{1}\left(\partial J, \mathbb{Z}_{2}\right)\right) \rightarrow H_{1}\left(J, \mathbb{Z}_{2}\right)\right)=\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(\partial J, \mathbb{Z}_{2}\right)\right)=2$. But this contradicts the Half Lives, Half Dies Theorem. Thus at least one of the generators of $H_{1}\left(T, \mathbb{Z}_{2}\right)$ must have been non-trivial in M.

Note that it is tempting to assume that the Half Lives, Half Dies Theorem implies that one of a or b must be trivial in J. But this is not always true. In particular, let M denote the product of a torus and an interval. Then no single non-trivial curve in the boundary of M is in the kernel.

Now we are ready to prove Proposition 2. Recall that the definition of the constant n_{M} is given in Section 3.

Proposition 2. Let γ be a 3-connected graph with genus at least 2, and let Γ be an embedding of γ in a closed, connected, orientable, irreducible 3manifold M such that (M, Γ) has an orientation reversing homeomorphism g fixing every vertex of Γ.

Then there is an embedding Γ^{\prime} of γ in a closed, connected, orientable 3-manifold M^{\prime} such that $\left(M^{\prime}, \Gamma^{\prime}\right)$ has an orientation reversing involution pointwise fixing Γ^{\prime} and $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right) \leq n_{M}$.

Proof. Let Λ denote either Γ or Γ with one edge deleted. Suppose that Λ is contained in a ball B in M. Since g fixes every vertex of Λ, without loss of generality, we can assume that Λ is pointwise fixed by g. Furthermore, since $g(B)$ is isotopic to B in M, we can assume that g leaves B setwise invariant. Let f be an embedding of (B, Λ) in S^{3}. Then $f \circ g \circ f^{-1}$ is an orientation reversing homeomorphism of $f(B)$ pointwise fixing $f(\Lambda)$. Now, $f \circ g \circ f^{-1}$ can be extended to an orientation reversing homeomorphism of S^{3} pointwise fixing $f(\Lambda)$.

However, Jiang and Wang [11] showed that no graph containing one of the graphs $K_{3,3}$ or K_{5} has an embedding in S^{3} which is pointwise fixed by an orientation reversing homeomorphism of S^{3}. Thus Λ cannot contain $K_{3,3}$ or K_{5}, and hence is abstractly planar. But this implies that $\operatorname{genus}(\Gamma) \leq 1$, which is contrary to hypothesis. Thus neither Γ nor Γ with an edge deleted can be contained in a ball in M. We will use this result later in the proof.

Since the remainder of the proof is quite lengthy, we break it into steps.

Step 1: We define a neighborhood $N(\Gamma)$.

Let V and E be the sets of vertices and edges of Γ respectively. For each vertex $v \in V$, define $N(v)$ to be a ball around v in M (i.e., a 0 handle containing v), and let $N(V)$ denote the union of the balls around the vertices. Also, for each edge $e \in E$, let $N(e)=D \times I$ be a solid tube around $\operatorname{cl}(e-N(V))$ in M (i.e., a 1-handle containing the portion of e outside of the 0-handles). Let $N(E)$ denote the union of the tubes around the edges. Then for each e in $N(E)$ the intersection $N(V) \cap N(e)$ follows the standard convention for attaching 1-handles to 0-handles. In other words, in $N(e)$ this intersection consists of the disks $D \times\{0\}$ and $D \times\{1\}$ and in $N(V)$ this intersection consists of these disks in the boundaries of the balls. Then $N(\Gamma)=N(E) \cup N(V)$ is a neighborhood of Γ.

For convenience we introduce the following terminology. For each vertex v, we let $\partial^{\prime} N(v)$ denote the sphere with holes $\partial N(v) \cap \partial N(\Gamma)$, and for each edge e we let $\partial^{\prime} N(e)$ denote the annulus $\partial N(e) \cap \partial N(\Gamma)$. Thus $\partial N(\Gamma)=$ $\partial^{\prime} N(E) \cup \partial^{\prime} N(V)$.

Now since $g(\Gamma)=\Gamma$ fixing each vertex of Γ, we know that $g(N(\Gamma))$ is isotopic to $N(\Gamma)$ setwise fixing Γ and fixing each vertex. Thus we can modify g by an isotopy (and by an abuse of notation, still refer to the map as g) so that for each vertex v and edge e we have $g(N(v))=N(v)$ and $g(N(e))=N(e)$. Because this modification was by an isotopy, our new g is still orientation reversing.

Step 2: We split $\operatorname{cl}(M-N(\Gamma))$ along a family τ of JSJ tori and choose an invariant component X.

Since M is irreducible and we have assumed that Γ is not contained in a ball, $\operatorname{cl}(M-N(\Gamma))$ is irreducible. Thus we can apply the Characteristic Decomposition Theorem of Jaco-Shalen [10] and Johannson [12] to get a minimal family of incompressible tori τ for $\operatorname{cl}(M-N(\Gamma))$ such that each closed up component of $M-(N(\Gamma) \cup \tau)$ is either Seifert fibered or atoriodal. Since the characteristic family τ is unique up to isotopy, we can again modify g by an isotopy (and again by an abuse of notation still refer to the map as g) so that $g(\tau)=\tau$ and still have $g(N(v))=N(v)$ and $g(N(e))=N(e)$ for each vertex v and edge e. Let X be the closed up component of $M-(N(\Gamma) \cup \tau)$ containing $\partial N(\Gamma)$ (see for example Figure 3). Then $g(X)=X$.

Also, since Γ is 3 -connected, genus $(\partial N(\Gamma))>1$. Thus the component X is not Seifert fibered, and hence is atoroidal. Let P denote the set of torus boundary components of X together with the annuli that make up the components of $\partial^{\prime} N(E)$. Since Γ is 3-connected, $\partial X-P=\partial N(\Gamma)-$ $\partial^{\prime} N(E)=\partial^{\prime} N(V)$ is incompressible in $\operatorname{cl}(M-N(\Gamma))$. It follows that $\partial X-P$ is incompressible in X. Furthermore, X is irreducible since $\operatorname{cl}(M-N(\Gamma))$ is irreducible and X is a component of the JSJ decomposition of $\operatorname{cl}(M-N(\Gamma))$.

Step 3: We show that any sphere obtained by capping off an annulus in the JSJ decomposition of (X, P) bounds a ball in M intersecting at most one edge of $\Gamma-N(V)$.

Figure 3. X is the closed up component of $M-(N(\Gamma) \cup \tau)$ between the grey incompressible torus and the black $\partial N(\Gamma)$.

We now apply the Characteristic Decomposition Theorem for Pared Manifolds $[10,12]$ to the pared manifold (X, P). Since X is atoroidal, this gives us a characteristic family σ of incompressible annuli in X with boundaries in $\partial X-P$ such that if W is the closure of any component of $X-\sigma$, then the pared manifold ($W, W \cap(P \cup \sigma)$) is either simple, Seifert fibered, or I - fibered (see [1] for the necessary definitions). Once again, since the characteristic family σ is unique up to isotopy, we can modify g by an isotopy (and again by an abuse of notation, still refer to the map as g) so that $g(\sigma)=\sigma$.

Let A be an annulus component of $P \cup \sigma$, and let S denote the sphere obtained by capping off A by a pair of disjoint disks D_{1} and D_{2} in $\partial N\left(v_{1}\right)$ and $\partial N\left(v_{2}\right)$, where v_{1} and v_{2} may or may not be distinct vertices. Suppose that each component of $M-S$ intersects more than one edge of $\Gamma-N(V)$. Then by removing the vertices v_{1} and v_{2} and the edges that contain them we would obtain two non-empty subgraphs (see Figure 4). But this contradicts our hypothesis that Γ is 3 -connected. Thus one of the components of $M-S$ meets $\Gamma-N(V)$ in at most one edge of Γ.

Figure 4. There is more than one edge on each side of this capped off annulus.

Now, since M is irreducible, one of the closed up components of $M-S$ is a ball B. However, we assumed at the beginning of our proof that neither Γ nor Γ with an edge removed can be contained in a ball in M. Thus B must be the closed up component of $M-S$ intersecting at most one edge of $\Gamma-N(V)$. Furthermore, since the annulus A is incompressible in X, if $v_{1} \neq v_{2}$ then there is some edge e with vertices v_{1} and v_{2} such that B contains $\operatorname{cl}\left(e-\left(N\left(v_{1}\right) \cup N\left(v_{2}\right)\right)\right)$. On the other hand, if $v_{1}=v_{2}$, then since Γ is a graph B must be disjoint from $\Gamma-N(V)$.

Note that since a ball cannot contain an incompressible torus, no torus boundary component of X can occur in one of these balls. It follows that every torus component of ∂X must also be a component of ∂W.

Step 4: We define a collection of balls $U_{e_{1}}, \ldots, U_{e_{n}}, V_{F_{1}}, \ldots, V_{F_{m}}$ in M such that every annulus in $P \cup \sigma$ is contained in some $U_{e_{i}}$ if its boundaries are in distinct components of $\partial N(V)$, and in some $V_{F_{j}}$ if its boundaries are in a single component of $\partial N(V)$.

Let A be an annulus in $P \cup \sigma$ with one boundary in $\partial N\left(v_{1}\right)$ and the other boundary in $\partial N\left(v_{2}\right)$ with $v_{1} \neq v_{2}$. By capping off A with disks in $N\left(v_{1}\right)$ and $N\left(v_{2}\right)$ we obtain a sphere, which as we saw in Step 3, bounds a ball B that contains $\operatorname{cl}\left(e-\left(N\left(v_{1}\right) \cup N\left(v_{2}\right)\right)\right)$ for some edge e in Γ. Now let \mathcal{C}_{e} denote the collection of all annuli in $P \cup \sigma$ with one boundary in $\partial N\left(v_{1}\right)$ and the other boundary in $\partial N\left(v_{2}\right)$. By capping off the annuli in \mathcal{C}_{e} with pairwise disjoint disks in $N\left(v_{1}\right)$ and $N\left(v_{2}\right)$, we obtain a collection of disjoint spheres which bound nested balls containing $\operatorname{cl}\left(e-\left(N\left(v_{1}\right) \cup N\left(v_{2}\right)\right)\right)$. Let A_{e} denote the annulus in \mathcal{C}_{e} which when capped off in this way is outermost with respect to this nesting. Observe that the boundaries of A_{e} also bound disks $D_{1} \subseteq \partial N\left(v_{1}\right)$ and $D_{2} \subseteq \partial N\left(v_{2}\right)$ which each meet Γ in a single point of e. Now the sphere $A_{e} \cup D_{1} \cup D_{2}$ bounds a ball U_{e} in M which contains both $\operatorname{cl}\left(e-\left(N\left(v_{1}\right) \cup N\left(v_{2}\right)\right)\right)$ and every annulus in \mathcal{C}_{e}.

We repeat the above paragraph for each annulus in $P \cup \sigma$ with boundaries in distinct components of $\partial N(V)$ to get a collection of pairwise disjoint balls $U_{e_{1}}, \ldots, U_{e_{n}}$ such that $U_{e_{1}} \cup \cdots \cup U_{e_{n}}$ contains both $\operatorname{cl}(\Gamma-N(V))$ and every annulus in $P \cup \sigma$ with boundaries in distinct components of $\partial N(V)$. Observe that for every edge e, the annulus $\partial^{\prime} N(e)$ is in P. Thus every edge e is contained in some U_{e}.

Next we consider an annulus F in σ which has both boundaries in a single component of $\partial N(V)$. We saw in Step 3 that if we cap off F by any pair of disjoint disks in $N(V)$ we obtain a sphere which bounds a ball that is disjoint from $\Gamma-N(V)$. We can now cap off every such annulus by pairwise disjoint disks properly embedded in $N(V)$ such that the balls we get are disjoint from the set of vertices V. Since the annuli in σ are disjoint and the pairs of disks are disjoint, pairs of balls we obtain in this way will either be nested or disjoint. Thus for each annulus in σ with boundaries in a single component of $\partial N(V)$, we can choose an annulus $F \in \sigma$ which when capped
off bounds an outermost ball V_{F} with respect to the nesting of the collection (see Figure 5).

Figure 5. V_{F} is an outermost ball.

In this way we get a collection of disjoint balls $V_{F_{1}}, \ldots, V_{F_{m}}$ such that $V_{F_{1}} \cup \cdots \cup V_{F_{m}}$ contains every annulus in σ with boundaries in a single component of $\partial N(V)$. Furthermore, each such ball $V_{F_{i}}$ is disjoint from $\Gamma-N(V), V$, and from $U_{e_{1}} \cup \cdots \cup U_{e_{n}}$. Note that each $U_{e_{j}} \subseteq X$ and has only one boundary component; and each $V_{F_{i}} \cap X$ has only one boundary component. Thus both $X-U_{e_{j}}$ and $X-V_{F_{i}}$ have a single component. It follows that the manifold

$$
W=\operatorname{cl}\left(X-\left(U_{e_{1}} \cup \cdots \cup U_{e_{n}} \cup V_{F_{1}} \cup \cdots \cup V_{F_{m}}\right)\right)
$$

is the closure of a single component of $X-\sigma$ (see Figure 6).

Figure 6. W is the closure of a single component of $X-\sigma$.

Step 5: We show that $g(W)=W$ and $(W, W \cap(P \cup \sigma))$ is simple as a pared manifold.

Recall that g fixes each vertex and leaves each edge setwise invariant. Also, $g(N(\Gamma))=N(\Gamma), g(P)=P$, and $g(\sigma)=\sigma$. Now, since the sets of balls $\left\{U_{e_{1}}, \ldots, U_{e_{n}}\right\}$ and $\left\{V_{F_{1}}, \ldots, V_{F_{m}}\right\}$ were chosen to be outermost, each of these sets is invariant under g. Furthermore, we know from Step 4 that each $U_{e_{j}}$ intersects $\Gamma-N(V)$ only in e_{j}. Now since each edge is fixed by g, both $A_{e_{j}}$ and $U_{e_{j}}$ are setwise invariant under g; and since each vertex is fixed by g, each boundary component of $A_{e_{j}}$ is also setwise invariant under g. Now let v be a vertex such that some F_{i} has both its boundary components in $\partial N(v)$. Since F_{i} is incompressible in X, each component of ∂F_{i} bounds a disk in $\partial N(v)$ which contains a boundary component of some $U_{e_{j}}$. Since the boundary components of each $U_{e_{j}}$ are setwise invariant under g, it follows that F_{i} and its boundary components are also setwise invariant under g. Thus $V_{F_{i}}$ is setwise invariant under g. Finally, since all of the $U_{e_{j}}$ and $V_{F_{i}}$ are invariant under g, we know that W must be setwise invariant under g as well.

To show that the pared manifold ($W, W \cap(P \cup \sigma)$) is simple, first recall that W is the closure of a single component of $X-\sigma$. Hence by JSJ for pared manifolds [10, 12], $(W, W \cap(P \cup \sigma))$ is either I-fibered, Seifert fibered, or simple as a pared manifold. We see that ($W, W \cap(P \cup \sigma)$) cannot be Seifert fibered or I-fibered as follows.

First observe that for every vertex v, there is some edge e such that the ball U_{e} meets $\partial N(v)$. It follows that ∂W meets every component of $\partial N(V)$. Furthermore, since every vertex v has valence at least three, $\partial^{\prime} N(v)$ is a sphere with at least three holes. Also each $U_{e_{j}}$ contains at most one boundary component of $\partial^{\prime} N(v)$, and each $V_{F_{i}}$ contains no boundary components of $\partial^{\prime} N(v)$. Hence by Lemma 1 , some component of $W \cap \partial N(v)$ is a sphere with at least three holes. It follows that the component of ∂W meeting $\partial N(\Gamma)$ has genus more than one, and thus the pared manifold ($W, W \cap(P \cup \sigma)$) cannot be Seifert fibered.

Next suppose for the sake of contradiction that the pared manifold ($W, W \cap$ $(P \cup \sigma))$ is I-fibered. By definition of I-fibered for pared manifolds, this means that there is an I-bundle map of W over a base surface Y such that $W \cap(P \cup \sigma)$ is in the pre-image of ∂Y. It follows that Y must be homeomorphic to a component of $\partial^{\prime} N(V)$. This means that the base surface Y must be a sphere with holes. Now since M is orientable, in fact W is a product $Y \times I$. Thus $W \cap(P \cup \sigma)=\partial Y \times I$, and $Y_{0}=Y \times\{0\}$ and $Y_{1}=Y \times\{1\}$ are components of $\partial^{\prime} N(V) \cap W$. However, since ∂W meets every component of $\partial N(V)$, this means that Γ contains at most two vertices. But this contradicts our hypothesis that Γ is 3 -connected. Therefore, the pared $(W, W \cap(P \cup \sigma)$) is not I-fibered, and since it is also not Seifert fibered, it must be simple.

Step 6: We prove that $g \mid W$ is isotopic to an orientation reversing involution h of $(W, W \cap(P \cup \sigma))$.

Now it follows from Thurston's Hyperbolization Theorem for Pared Manifolds [17] applied to the simple pared manifold $(W, W \cap(P \cup \sigma))$ that $W-(W \cap(P \cup \sigma))$ admits a finite volume complete hyperbolic metric with totally geodesic boundary. Let D denote the double of $W-(W \cap(P \cup \sigma))$ along its boundary. Then D is a finite volume hyperbolic manifold, and $g \mid W$ can be doubled to obtain an orientation reversing homeomorphism of D (which we still call g) taking each copy of $W-(W \cap(P \cup \sigma))$ to itself. Now by Mostow's Rigidity Theorem [14] applied to D, the homeomorphism $g: D \rightarrow D$ is homotopic to an orientation reversing finite order isometry $h: D \rightarrow D$ that restricts to an isometry of $W-(W \cap(P \cup \sigma))$. By removing horocyclic neighborhoods of the cusps of $W-(W \cap(P \cup \sigma))$, we obtain a copy of the pair $(W, W \cap(P \cup \sigma))$ which is contained in $W-(W \cap(P \cup \sigma))$ and is setwise invariant under h. We abuse notation and now consider h to be an orientation reversing finite order isometry of $(W, W \cap(P \cup \sigma))$ instead of this copy. Furthermore, h induces isometries on the collection of tori and annuli in $W \cap(P \cup \sigma)$ with respect to a flat metric. Furthermore, the sets $\partial^{\prime} N(V) \cap W, \partial^{\prime} N(E) \cap W$, and $\tau \cap W$ are each setwise invariant under h. Finally, it follows from Waldhausen's Isotopy Theorem [19] that h is isotopic to $g \mid W$ by an isotopy leaving $W \cap(P \cup \sigma)$ setwise invariant.

Now, recall that the boundary components of W consist of tori in τ, and the union of spheres with holes in $\partial^{\prime} N(V)$ together with annuli in $P \cup \sigma$. Recall from Step 5 that g leaves setwise invariant each annulus $A_{e_{j}} \subseteq \partial U_{e_{j}}$ with boundaries in distinct components of $\partial N(V)$, each annulus $F_{i} \subseteq \partial V_{F_{i}}$ with both boundaries in a single component of $\partial N(V)$, each component of $\partial A_{e_{j}}$, and each component of ∂F_{i}. Since h is isotopic to $g \mid W$ by an isotopy leaving $W \cap(P \cup \sigma)$ setwise invariant, h leaves invariant the same sets as g. It follows that for each vertex v, we have $\left.h\left(\partial^{\prime} N(v)\right) \cap W\right)=\partial^{\prime} N(v) \cap W$, and h takes each component of $W \cap \partial N(v)$ to itself, leaving each boundary component setwise invariant.

Since h has finite order, h restricts to a finite order homeomorphism of every component of $W \cap \partial N(V)$. We saw in Step 5 that for every vertex v, at least one component C_{v} of $W \cap \partial N(v)$ is a sphere with at least three holes. Since h restricts to a finite order homeomorphism of C_{v} taking each boundary component of C_{v} to itself, h must be a reflection of C_{v} which also reflects each component of ∂C_{v}. Now h^{2} is a finite order, orientation preserving isometry of W that pointwise fixes the surface C_{v}. It follows that h^{2} is the identity, and hence h is an involution of W.

Step 7: We extend h to an orientation reversing involution of $X \cup N(\Gamma)$ which pointwise fixes a new embedding Γ^{\prime} of γ.

Observe that since every annulus in $P \cup \sigma$ is incompressible in W, no component of $W \cap \partial N(V)$ can be a disk. Thus every component of $W \cap$ $\partial N(V)$ is either an annulus or a sphere with at least three holes. As we saw in Step 6 , for each vertex v, h reflects some component C_{v} of $W \cap \partial N(v)$ which
is a sphere with at least three holes, and h reflects every component of ∂C_{v}. Let b_{0} denote some boundary component of C_{v}. Then b_{0} is also a boundary component of either an annulus $A_{e_{j}}$ or an annulus F_{i}. Since h reflects b_{0}, we know that h must also reflect the annulus $A_{e_{j}}$ or F_{i}, whichever contains b_{0} in its boundary. Since the boundaries of the annulus are not interchanged, h must also reflect each boundary component of $A_{e_{j}}$ or F_{i}. Below we extend h to $U_{e_{j}}$ or $V_{F_{i}}$.

First we consider the case where b_{0} is in the boundary of an annulus $A_{e_{j}} \subseteq \partial U_{e_{j}}$. Let D_{j} and D_{j}^{\prime} denote the disks in $\operatorname{cl}\left(\partial U_{e_{j}}-A_{e_{j}}\right)$. Then D_{j} and D_{j}^{\prime} each meet Γ in a single point of e_{j}. Since h reflects the annulus $A_{e_{j}}$ together with each boundary component of $A_{e_{j}}$, we can extend h radially to the disks D_{j} and D_{j}^{\prime} to get a reflection of the sphere $A_{e_{j}} \cup D_{j} \cup D_{j}^{\prime}$ pointwise fixing a circle containing the points $D_{j} \cap e_{j}$ and $D_{j}^{\prime} \cap e_{j}$. Recall that the sphere $A_{e_{j}} \cup D_{j} \cup D_{j}^{\prime}$ bounds the ball $U_{e_{j}}$ in M. Now, we can express $U_{e_{j}}$ as a product $D_{j} \times I$ whose core $\overline{e_{j}}$ has endpoints $D_{j} \cap e_{j}$ and $D_{j}^{\prime} \cap e_{j}$ (see Figure 7). Now we extend h from a reflection of the sphere $A_{e_{j}} \cup D_{j} \cup D_{j}^{\prime}$ to a reflection of the product $D_{j} \times I$ which pointwise fixes the core $\overline{e_{j}}$.

Figure 7. We can think of $U_{e_{j}}$ as a product $D_{j} \times I$ with core $\overline{e_{j}}$.

Next we consider the case where b_{0} is a boundary component of an annulus $F_{i} \subseteq \partial V_{F_{i}}$ which has both boundaries in a single $\partial N(v)$. Recall that $\operatorname{cl}\left(\partial V_{F_{i}}-F_{i}\right)$ consists of disks D_{i} and D_{i}^{\prime} properly embedded in $N(v)$. Since h reflects the annulus F_{i} together with each of its boundary components, we can extend h radially to the disks D_{i} and D_{i}^{\prime} to get a reflection of the sphere $F_{i} \cup D_{i} \cup D_{i}^{\prime}$ pointwise fixing a circle containing all of the points of $\Gamma \cap D_{i}$ and $\Gamma \cap D_{i}^{\prime}$. Recall that $V_{F_{i}} \cap \Gamma$ is a collection of one or more arcs. Thus we can extend h to a reflection of the ball $V_{F_{i}}$ which pointwise fixing a disk containing $V_{F_{i}} \cap \Gamma$ (see Figure 8).

Now the extension of h reflects the sphere with holes C_{v}, and one of the balls $U_{e_{j}}$ or $V_{F_{i}}$ depending on whether b_{0} is a boundary component of $A_{e_{j}}$ or F_{i}, respectively. Next we let S_{1} denote the union of C_{v} together with the annulus $A_{e_{j}}$ or F_{i} glued along b_{0}. Now h reflects S_{1} taking every boundary component of S_{1} to itself, and hence reflecting every boundary component of S_{1}. Let b_{1} be a boundary component of S_{1}. If b_{1} is not the other boundary of the annulus $A_{e_{j}}$ or F_{i}, then we repeat the above argument with b_{1} in place of b_{0}. If b_{1} is the other boundary of the annulus $A_{e_{j}}$ or F_{i}, then b_{1} is also a boundary of some other component S_{1}^{\prime} of $W \cap \partial N(V)$, as illustrated in Figure 9. In this case, since b_{1} is reflected by h and every component of

Figure 8. We extend h to a reflection of the ball $V_{F_{i}}$ which pointwise fixes $\Gamma \cap V_{F_{i}}$.
S_{1}^{\prime} is invariant under h, we know that h must reflect $S_{2}=S_{1} \cup S_{1}^{\prime}$. Now let b_{2} denote a boundary component of S_{2}, and repeat the above argument with b_{2} in place of b_{0}.

Figure 9. In this illustration, we have three choices for the boundary component b_{2} of $S_{2}=S_{0} \cup A_{e_{j}} \cup S_{1}^{\prime}$.

In general, for a given surface S_{n} obtained in this way, the surface S_{n+1} is the union of S_{n} together with either an annulus of the form $A_{e_{j}}$ or F_{i} or a sphere with at least two holes contained in $W \cap \partial N(V)$. Furthermore, S_{n+1} is reflected by h. This process will only stop when the surface that we obtain has no boundary components. Since ∂W has only one component which intersects $\partial N(V)$, the closed surface that we obtain in this way must be ∂W. Thus we have extended h to an orientation reversing involution of each of the balls $U_{e_{1}}, \ldots, U_{e_{n}}, V_{F_{1}}, \ldots, V_{F_{m}}$.

Now let $N=N(V)-\left(V_{F_{1}} \cup \cdots \cup V_{F_{m}}\right)$. Then N is a collection of disjoint balls (for example in Figure 8, N(v)- $V_{F_{i}}$ is two balls one of which contains $v)$. Also, h is a reflection of each component of ∂N that fixes each point in $\partial N \cap \Gamma$. Now we extend h radially to a reflection of each ball of N in such a way that h pointwise fixes each component of $N \cap \Gamma$. Thus h is defined as a reflection of each component of $N(V)$ which pointwise fixes $N(V) \cap \Gamma$.

We have now extended h to an orientation reversing involution of the manifold

$$
Y=W \cup V_{F_{1}} \cup \cdots \cup V_{F_{m}} \cup U_{e_{1}} \cup \cdots \cup U_{e_{n}} \cup N
$$

Recall from the end of Step 3 that ∂X and ∂W have the same collection of tori in their boundary components. Furthermore, we have filled in the boundary component of W meeting $\partial N(\Gamma)$ with a collection of balls in X and $N(\Gamma)$. Thus in fact $Y=X \cup N(\Gamma)$.

Finally, we define a new embedding Γ^{\prime} of γ in $X \cup N(\Gamma)$ as follows. Let $\Gamma^{\prime} \cap N(V)=\Gamma \cap N(V)$. Then for each edge e_{j} define an embedding of $e_{j}-N(V)$ in Γ^{\prime} as the core $\overline{e_{j}}$ of $U_{e_{j}}=D_{j} \times I$, which we know is pointwise fixed by h according to the way we extended h to $U_{e_{j}}$ (recall Figure 7).

Step 8: We prove that if an essential curve in a component of $\partial(X \cup N(\Gamma))$ compresses in M, then it compresses in $X \cup N(\Gamma)$.

Let $\left\{T_{1}, \ldots, T_{r}\right\}$ denote the set of boundary components of $X \cup N(\Gamma)$. These tori are contained in the characteristic family τ, and hence are incompressible in $\operatorname{cl}(M-N(\Gamma))$.

Suppose that an essential curve λ_{i} on some T_{i} compresses in M. Let D_{i} be a compressing disk for λ_{i} whose intersection with the set of tori $\left\{T_{1}, \ldots, T_{r}\right\}$ is minimal. Let $D=D_{i}$ if the interior of D_{i} is disjoint from T_{i}. Otherwise, there exists some D in the interior of D_{i} such that D_{i} is a compressing disk for T_{i} whose interior is disjoint from T_{i}. In either case, the intersection of D with $\left\{T_{1}, \ldots, T_{r}\right\}$ is minimal.

Suppose that D contains at least one curve of intersection in its interior. Hence there is an innermost disk Δ on D which is a compressing disk for some T_{j} with $j \neq i$. Since T_{j} compresses in M but is incompressible in $\operatorname{cl}(M-N(\Gamma))$, we know that Δ intersects Γ.

Since M is irreducible, any compressible torus is separating in M. Thus we can let X_{j} denote the closed up component of $M-T_{j}$ containing X and let V_{j} denote the closed up component of $M-T_{j}$ whose interior is disjoint from X. Now let S denote the region of D which is adjacent to the innermost disk Δ. Then $S \subseteq V_{j}$, since $\Delta \subseteq X_{j}$. Also, $\partial D \subseteq T_{i} \subseteq X \subseteq X_{j}$ implies that S is adjacent to another region of D which is contained in X_{j}. In particular, there must be another circle of intersection α of $D \cap T_{j}$ which bounds a disk $\bar{D} \subseteq D$ containing $\Delta \cup S$. We illustrate the abstract disk D and its intersections with T_{j} in Figure 10. The white regions in the figure are contained in V_{j}, and the grey regions are contained in X_{j}. Note we do not include any circles of intersection of D with any T_{k} with $k \neq j$.

Now, since the intersection of D with the tori T_{1}, \ldots, T_{r} is minimal, all of the curves of intersection of $D \cap T_{j}$ must be essential on T_{j}. In particular, $\partial \Delta$ and α must both be essential on T_{j}. Since there cannot be two essential, disjoint, non-parallel curves on a torus, this means that α is parallel to $\partial \Delta$ on T_{j}. It follows that α must bound a disk $\bar{\Delta}$ which is parallel to Δ in M. In particular, since the interior of Δ is disjoint from T_{1}, \ldots, T_{r}, the interior of $\bar{\Delta}$ is as well. But now by replacing the disk \bar{D} with the disk $\bar{\Delta}$ in the

Figure 10. A picture of the abstract disk D and its circles of intersection with T_{j}.
compressing disk D we obtain a new compressing disk D^{\prime} which has fewer curves of intersection with T_{1}, \ldots, T_{r} than D has. From this contradiction we conclude that the interior of D must be disjoint from $T_{1} \cup \cdots \cup T_{r}$, and hence $D \subseteq X \cup N(\Gamma)$.

If $\partial D=\lambda_{i}$, then λ_{i} compresses in $X \cup N(\Gamma)$ as required. Otherwise, the compression disk D was contained in the interior of the original disk D_{1} and $\partial D \subseteq T_{i}$. In this case, since the intersection of D_{1} with the set of tori $\left\{T_{1}, \ldots, T_{r}\right\}$ was minimal, ∂D is essential in T_{i}. But now ∂D and λ_{i} are disjoint essential curves on T_{i}. Hence as we saw above, the disks D and D_{1} must be parallel in M. Now, since $D \subseteq X \cup N(\Gamma)$, it follows that λ_{i} must compress in $X \cup N(\Gamma)$ as well.

Step 9: We fill each component T_{i} of $\partial(X \cup N(\Gamma))$ with a solid torus such that the manifold M^{\prime} that we get satisfies the condition below.

Condition: If T_{i} is compressible in M, then both generators of $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ are trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$, and if T_{i} is incompressible in M then at least one generator of $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ is trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$.

Let T_{i} be a component of $\partial(X \cup N(\Gamma))$. By Corollary 1 there is a curve μ_{i} on T_{i} which is non-trivial in $H_{1}\left(X \cup N(\Gamma), \mathbb{Z}_{2}\right)$. Also, we know from Step 8 that if some essential curve λ_{i} on T_{i} compresses in M, then λ_{i} also compresses in $X \cup N(\Gamma)$. In particular, λ_{i} is not homologous in T_{i} to μ_{i}.

Now suppose that for some $j \neq i$, the involution h interchanges T_{i} and T_{j}. Since $h: X \cup N(\Gamma) \rightarrow X \cup N(\Gamma)$ is a homeomorphism and μ_{i} is a curve on T_{i} which is non-trivial in $H_{1}\left(X \cup N(\Gamma), \mathbb{Z}_{2}\right)$, we know that $h\left(\mu_{i}\right)$ is a curve on T_{j} which is also non-trivial in $H_{1}\left(X \cup N(\Gamma), \mathbb{Z}_{2}\right)$. Now we fill $X \cup N(\Gamma)$ along T_{i} by adding a solid torus V_{i} with its meridian attached to the non-trivial curve μ_{i}, and we fill along T_{j} by adding a solid torus V_{j} with
its meridian attached to $h\left(\mu_{i}\right)$. Then we extend the involution h radially on $V_{i} \cup V_{j}$ (abusing notation and still calling the involution h). We repeat this process for every component of $X \cup N(\Gamma)$ which is not setwise invariant under h. As a result, for every T_{i} along which we have glued a solid torus V_{i}, the curve μ_{i} on T_{i} is trivial in $H_{1}\left(X \cup N(\Gamma) \cup V_{i}, \mathbb{Z}_{2}\right)$. Furthermore, if T_{i} is compressible in M, then there is an essential curve λ_{i} on T_{i} which compresses in $X \cup N(\Gamma)$. Now, λ_{i} is not homologous to μ_{i} in $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$, and together they generate $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$. Furthermore, both λ_{i} and μ_{i} are trivial in $H_{1}\left(X \cup N(\Gamma) \cup V_{i}, \mathbb{Z}_{2}\right)$

Let Z be the manifold that we have obtained by filling all of the boundary components of $X \cup N(\Gamma)$ which are not setwise fixed by h, and let T_{i} be a component of ∂Z. Recall from Step 7 that Γ^{\prime} is an embedding of γ in $X \cup N(\Gamma)$ which is pointwise fixed by h. Now $h: Z \rightarrow Z$ is an orientation reversing involution pointwise fixing Γ^{\prime}, and T_{i} is setwise invariant under h. Since $h \mid T_{i}$ is an order 2 isometry of a torus, $h \mid T_{i}$ is either a reflection pointwise fixing two parallel circles on T_{i}, a rotation pointwise fixing four points of T_{i}, or a rotation fixing no points of T_{i}. In each of these cases, there is a pair of generators of $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ each of which is homologous to its image under h. It follows that for any given generator a_{i} of $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ (which may or may not be homologous to $h\left(a_{i}\right)$ in $\left.H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)\right)$, there is a curve b_{i} on T_{i} such that $\left\langle a_{i}, b_{i}\right\rangle=H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ and $h\left(b_{i}\right)$ is homologous to b_{i} in $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$.

Now suppose that some essential curve λ_{i} on T_{i} compresses in M. Then by Step $8, \lambda_{i}$ also compresses in $X \cup N(\Gamma)$, and hence in Z. We can now pick a curve b_{i} on T_{i} such that $\left\langle\lambda_{i}, b_{i}\right\rangle=H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ and $h\left(b_{i}\right)$ is homologous to b_{i} in $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$. Since λ_{i} is null homologous in Z, by Corollary $1, b_{i}$ is nontrivial in $H_{1}\left(Z, \mathbb{Z}_{2}\right)$. Now we fill Z along T_{i} by adding a solid torus V_{i} with its meridian attached to the non-trivial curve b_{i}. Since $h\left(b_{i}\right)$ is homologous to b_{i} in $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$, we can extend h radially to the solid torus V_{i}. Then $h: Z \cup V_{i} \rightarrow Z \cup V_{i}$ is an orientation reversing involution, and both λ_{i} and b_{i} are trivial in $H_{1}\left(Z \cup V_{i}, \mathbb{Z}_{2}\right)$.

Now suppose that some T_{i} is incompressible in M. As we saw above, there is a pair of generators of $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ each of which is homologous in T_{i} to its image under h. By Corollary 1, at most one of these generators is null homologous in Z. So there is some curve b_{i} on T_{i} which is non-trivial in $H_{1}\left(Z, \mathbb{Z}_{2}\right)$ and homologous to $h\left(b_{i}\right)$ on T_{i}. Now fill T_{i} by adding a solid torus V_{i} with its meridian attached to the curve b_{i} and extend h to V_{i}. Then $h: Z \cup V_{i} \rightarrow Z \cup V_{i}$ is again an orientation reversing involution, and b_{i} is trivial in $H_{1}\left(Z \cup V_{i}, \mathbb{Z}_{2}\right)$.

In this way, we glue a solid torus to each of the T_{i} in $\partial(X \cup N(\Gamma))$ to obtain a closed manifold M^{\prime} satisfying the required condition. Since $\Gamma^{\prime} \subseteq X \cup N(\Gamma)$, this gives us an embedding Γ^{\prime} of γ in M^{\prime}. Furthermore, we have extended h to an orientation reversing involution of $\left(M^{\prime}, \Gamma^{\prime}\right)$ which pointwise fixes Γ^{\prime}.

Step 10: We prove that there are at most N_{M} tori in $\partial(X \cup N(\Gamma))$ which are incompressible in M.

First suppose that some pair of distinct components T_{i} and T_{j} of $\partial(X \cup$ $N(\Gamma)$) are parallel in M. Then T_{i} and T_{j} co-bound a region R in M which is homeomorphic to a product of a torus and an interval. However, since T_{i} and T_{j} are tori in the characteristic family for $\operatorname{cl}(M-N(\Gamma))$, they cannot be parallel in $\mathrm{cl}(M-N(\Gamma))$. Thus R intersects Γ. But since $\partial R=T_{i} \cup T_{j}$ and Γ is disjoint from $T_{i} \cup T_{j}$, this implies that $\Gamma \subseteq R$.

Suppose that $X \cup N(\Gamma)$ has a boundary component T_{k} which is distinct from T_{i} and T_{j}. Since $X \cup N(\Gamma)$ is a connected set which contains Γ and has T_{i}, T_{j}, and T_{k} among its boundary components, T_{k} must be contained in R. But since $R \cong T \times I$, either T_{k} is parallel in M to both T_{i} and T_{j} or T_{k} bounds a solid torus $V \subseteq R$. The former would imply that T_{k} is parallel to one of T_{i} or T_{j} in $\operatorname{cl}(M-N(\Gamma))$, which is impossible since all three are in the characteristic family for $\mathrm{cl}(M-N(\Gamma))$. However, the latter would imply that $N(\Gamma) \subseteq V$ because otherwise T_{k} would be compressible in $\operatorname{cl}(M-N(\Gamma))$. But, this is impossible since $\partial N(\Gamma), T_{k}, T_{i}$, and T_{j} are all boundary components of X. Hence we must have $\partial(X \cup N(\Gamma))=T_{i} \cup T_{j}$. Since we saw in Section 3 that $N_{M} \geq 2$, it now follows that $\partial(X \cup N(\Gamma))$ has at most N_{M} components as required. Thus we can assume that no pair of distinct components of $\partial(X \cup N(\Gamma))$ are parallel in M.

Let T_{i} be a component of $\partial(X \cup N(\Gamma))$ which is incompressible in M. Since Ω is the characteristic family of tori for M, we know that T_{i} can be isotoped to be disjoint from Ω (see for example [4]). Thus, without loss of generality, we can assume that T_{i} is contained in a closed up component of $M-\Omega$ which is either atoroidal or Seifert fibered. If T_{i} is in an atoroidal component, then T_{i} is parallel to a torus in Ω. If T_{i} is in a Seifert fibered component, then it follows from Waldhausen [18] that T_{i} is parallel to either a torus in Ω or a vertical or horizontal torus of the fibration.

Since no pair of distinct components of $\partial(X \cup N(\Gamma))$ are parallel in M, there are at most $t=|\Omega|$ incompressible tori in $\partial(X \cup N(\Gamma))$ that are parallel to a torus in Ω, and at most w (see Section 3 for the definition of w) incompressible tori in $\partial(X \cup N(\Gamma))$ that are parallel to a vertical or horizontal torus in some Seifert fibered closed up component of $M-\Omega$. Hence there are at most $N_{M}=t+w$ tori in $\partial(X \cup N(\Gamma))$ that are incompressible in M.

Step 11: We prove the inequality $\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right) \leq n_{M}$.
Recall that M^{\prime} is obtained from $X \cup N(\Gamma)$ by adding a collection of solid tori V_{1}, \ldots, V_{r} along the tori T_{1}, \ldots, T_{r}.

Let $[\beta]_{M^{\prime}}$ be a non-trivial element of $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$. Now for each solid torus V_{i}, let C_{i} denote its core. Then by general position we can choose a representative curve for $[\beta]_{M^{\prime}}$ that is disjoint from $C_{1} \cup \cdots \cup C_{r}$. Hence we can assume that β is disjoint from V_{1}, \ldots, V_{r}. Now since $\beta \subseteq X \cup N(\Gamma) \subseteq M$, we can also consider the element $[\beta]_{M} \in H_{1}\left(M, \mathbb{Z}_{2}\right)$.

Suppose that $[\beta]_{M}$ is trivial in $H_{1}\left(M, \mathbb{Z}_{2}\right)$. It follows that β is homologous in $X \cup N(\Gamma)$ to a collection of curves on $T_{1} \cup \cdots \cup T_{r}$ which are trivial
in M but non-trivial in M^{\prime}. Recall from the condition in Step 9 that if T_{i} is compressible in M, then both generators of $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ are trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$, and if T_{i} is incompressible in M then at least one generator of $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ is trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$. For each T_{i} which is incompressible in M, if there is a generator of $H_{1}\left(T_{i} ; Z_{2}\right)$ that is not trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$ we denote it by β_{i}. Then every curve on T_{i} is either trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$ or homologous to β_{i} in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$.

Returning now to the curve β which is homologous in M^{\prime} to a sum of curves on $T_{1} \cup \cdots \cup T_{r}$. Since for any T_{i} which is compressible in M both generators of $H_{1}\left(T_{i}, \mathbb{Z}_{2}\right)$ are trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$, it now follows that β is homologous in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$ to a sum of β_{i} 's on T_{i} 's that are incompressible in M. But by Step 10, there are at most N_{M} such tori. Hence there are at most N_{M} such β_{i} that are not trivial in $H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)$. It follows that these N_{M} curves generate every non-trivial $[\beta]_{M^{\prime}}$ which is trivial in M. This give us the required inequality:

$$
\operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M^{\prime}, \mathbb{Z}_{2}\right)\right) \leq \operatorname{dim}_{\mathbb{Z}_{2}}\left(H_{1}\left(M, \mathbb{Z}_{2}\right)\right)+N_{M}=n_{M}
$$

Hence the proposition follows.

References cited

[1] F. Bonahon, Geometric structures on 3-manifolds, Handbook of Geometric Topology, 93-164, North-Holland, Amsterdam, 2002.
[2] E. Flapan, Symmetries of Möbius ladders, Mathematische Annalen 283 (1989), 271-283.
[3] E. Flapan, Rigidity of graph symmetries in the 3-sphere, Journal of Knot Theory and its Ramifications 4 (1995), 373-388.
[4] A. Hatcher, The classification of 3-manifolds- a brief overview http://www.math.cornell.edu/ hatcher/3M/3Mdownloads.html
[5] A. Hatcher, Notes on basic 3-manifold topology, http://www.math.cornell.edu/ hatcher/3M/3Mdownloads.html
[6] A. Hatcher, P. Lochak and L. Schneps, On the Teichmüller tower of mapping class groups, J. Reine Angew. Math. 521 (2000), 1-24.
[7] H. Howards, Generating disjoint incompressible surfaces, Topology and its Applications 58 (2011),325-343.
[8] H. Howards, Surfaces and 3-manifolds, Dissertation University of California San Diego, mathematics (1997).
[9] T. Ikeda, Rigidly achiral hyperbolic spatial graphs in 3-manifolds Journal of Knot Theory and its Ramifications 22 (2013), 12 pages.
[10] W. Jaco and P. Shalen, Seifert fibred spaces in 3-manifolds, Memoirs Amer. Math. Soc. 220, Amer. Math. Soc., Providence (1979).
[11] B. Jiang and S. Wang, Achirality and planarity, Communications in Contemporary Mathematics 2 (2000), 299-305.
[12] K. Johannson, Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Mathematics 761, Springer-Verlag, New York, Berlin, Heidelberg (1979).
[13] M. Kobayashi, Fixed point sets of orientation reversing involutions on 3-manifolds Osaka J. Math. 25 (1988), 877-879.
[14] G. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies 78, Princeton University Press, Princeton, NJ, 1973.
[15] P. A. Smith, Transformations of finite period. II, Ann. of Math. 40 (1939), 690-711. 1
[16] Richard Strong, Diskbusting elements of the free group, Mathematical Research Letters 4 (1997), 2010.
[17] W. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.
[18] F. Waldhausen, Eine Klasse von 3-dimensionaler Mannigfaltigkeiten I, Inventiones 3 (1967), 308-333.
[19] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. Math. 87 (1968), 56-88.

Department of Mathematics, Pomona College, Claremont, CA 91711, USA
Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109, USA

[^0]: Date: June 12, 2014.
 1991 Mathematics Subject Classification. 57M25, 57M15, 92E10, 05C10.
 Key words and phrases. chiral, achiral, spatial graphs, 3-manifolds.

