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Abstract. The main result of this paper is that for every closed, con-
nected, orientable, irreducible 3-manifold M , there is an integer nM such
that any abstract graph with no automorphism of order 2 which has a
3-connected minor whose genus is more than nM has no achiral em-
bedding in M . By contrast, the paper also proves that for every graph
γ, there are infinitely many closed, connected, orientable, irreducible
3-manifolds M such that some embedding of γ in M is pointwise fixed
by an orientation reversing involution of M .

1. Introduction

The study of chirality originally developed as a tool to help predict and
explain molecular behavior. In particular, a molecule is said to be chiral if
it can chemically interconvert with its mirror image at room temperature,
and otherwise it is said to be achiral. Since small molecules are normally
rigid, whether or not a small molecule is chiral can be determined from a
geometric model. However, a molecule which is flexible or can rotate around
specific bonds can be achiral even if a rigid model of it is geometrically
distinct from its mirror image. The existence of such non-rigid molecules
was the original motivation for studying chirality of spatial graphs from a
topological perspective. However, the topological chirality of spatial graphs
is interesting to consider whether or not they represent molecular structures.

In particular, we say that a graph embedded in S3 is achiral, if there
is an orientation reversing homeomorphism of S3 taking the graph to itself.
Otherwise, we say the embedded graph is chiral. We can think of knots with
vertices as examples of graphs where some embeddings are chiral and others
are not. By contrast, there are abstract graphs which have the property
that no matter how they are embedded in S3, they are topologically chiral.
In this case, the graph is said to be intrinsically chiral in S3. In chemical
terms, a molecule would be intrinsically chiral if it and all of its topological
stereoisomers are chiral. Molecular Möbius ladder with an odd number of
rungs (at least three) were the first molecules that were shown to be intrin-
sically chiral [2]. More generally, the following theorem provides a method
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for showing that many graphs (molecular and otherwise) are intrinsically
chiral in S3.

Theorem 1. [3] Every non-planar abstract graph γ with no automorphism
of order 2 is intrinsically chiral in S3.

It makes sense to call such graphs intrinsically chiral because the chi-
rality of such a graph depends only on the abstract graph and not on the
embedding of the graph in S3. However, we can define chirality for graphs
embedded in any 3-manifold, and ask whether a graph which is intrinsically
chiral in S3 would be intrinsically chiral in a different 3-manifold. We prove
the following theorem which shows that no graph can be intrinsically chiral
in every 3-manifold.

Theorem 2. For every graph γ, there are infinitely many closed, connected,
orientable, irreducible 3-manifolds M such that some embedding of γ in M
is pointwise fixed by an orientation reversing involution of M .

The proof of this result can be thought of as a generalization of the fact
that every planar graph has an embedding in S3 which is pointwise fixed
by a reflection of S3. On the other hand, our main result is the following
generalization of Theorem 1, which shows that for any “nice” 3-manifold M ,
any 3-connected abstract graph with large enough genus and no involution
is intrinsically chiral in M .

Theorem 3. For every closed, connected, orientable, irreducible 3-manifold
M , there is an integer nM such that any abstract graph with no automor-
phism of order 2 which has a 3-connected minor λ with genus(λ) > nM is
intrinsically chiral in M .

Note that by contrast with our result about embeddings of graphs in 3-
manifolds without boundary, Ikeda [9] has shown in the theorem below that
for “nice” 3-manifolds with aspherical boundary, any abstract graph with
large enough genus which has a certain type of involution has an achiral
hyperbolic embedding in the double of the manifold.

Ikeda’s Theorem. [9] Let M be a compact, connected, orientable, 3-manifold
with non-empty aspherical boundary. Then there is an integer nM such that
for any abstract graph λ with genus(λ) > nM and no vertices of valence 1,
any automorphism of order 2 of λ that does not restrict to an orientation
preserving automorphism of a cycle in λ can be induced by an orientation
reversing involution of some hyperbolic embedding of λ in the double of M .

In Section 2, we prove Theorem 1. In Section 3, we determine the value
of nM for for a given manifold M . In Section 4, we prove Theorem 3 making
use of a proposition, which we then prove in Section 5.
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2. Achiral embeddings

The goal of this section is to prove Theorem 2. To that end, we prove
the following proposition. Note that we use dimZ(H1(M,Z)) to denote the
dimension of the first Z-homology group of M and dimZ2(H1(M,Z2)) to
denote the dimension of the first Z2-homology group of M .

Proposition 1. Let S be a closed, orientable surface. Then for infin-
itely many closed, connected, orientable, irreducible 3-manifolds Q such that
dimZ2(H1(Q,Z2)) = genus(S), there is an embedding of S in Q which is
pointwise fixed by an orientation reversing involution of Q.

The proof of Proposition 1 will make use of the idea of a disk-busting
curve, which is a simple closed curve in a handlebody that intersects every
essential, properly embedded disk in the handlebody. For example, a core
of a solid torus is disk busting in the solid torus. For a genus 2 handlebody
with fundamental group generated by a and b an example of a disk-busting
curve is one that includes into the fundamental group of the handlebody
as abab−1 (see Figure 1). All handlebodies have disk-busting curves and
Richard Strong [16] gives an algorithm to recognize them. For more on
disk-busting curves see [16] or [8].

Figure 1. A disk-busting curve in a genus 2 handlebody.

Proof. Let g be the genus of a closed orientable surface S. LetM be the man-
ifold obtained by gluing genus g handlebodies V1 and V2 together along S in
such a way that there is an orientation reversing involution h interchanging
V1 and V2 which pointwise fixes the surface S. Now M is a closed, con-
nected, orientable 3-manifold M such that dimZ2(H1(M,Z2)) = genus(S).
However, M is reducible.

In order to create an irreducible 3-manifold, we first remove neighbor-
hoods N1 and N2 of identical disk busting curves in the interiors of the
handlebodies V1 and V2 such that N1 and N2 are interchanged by the invo-
lution h. Note that since cl(M − (S ∪ N1 ∪ N2)) consists of two identical
handlebodies from which neighborhoods of disk busting curves have been
removed, the inclusion of S in each component of cl(M − (S ∪ N1 ∪ N2))
is incompressible. Now we sew in identical knot complements Q1 and Q2

along ∂N1 and ∂N2 respectively so that the Seifert surfaces of the Qi are
glued in where the meridians of the Ni were.
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Let Q denote the 3-manifold obtained in this way. Then the restriction
h|cl(M−(S∪N1∪N2)) can be extended to an orientation reversing involution
of Q that pointwise fixes S. Note that the components of cl(Q− (S ∪ ∂Q1 ∪
∂Q2)) that contain S are homeomorphic to the corresponding components
of cl(M − (S ∪ ∂N1 ∪ ∂N2)).

Claim 1: The surfaces S, ∂Q1, and ∂Q2 are each incompressible in Q

Proof of Claim 1: Assume one of S, ∂Q1, or ∂Q2 is compressible in Q.
Then there is a compressing disk D for one of these surfaces that meets
S ∪ ∂Q1 ∪ ∂Q2 transversally in a minimal number of components. If the
interior of D intersects one of the surfaces S, ∂Q1, or ∂Q2, then an innermost
loop on D bounds a compressing disk for that surface whose interior is
disjoint from the other surfaces. This implies that one of S, ∂Q1, or ∂Q2 is
compressible in a component of cl(Q− (S ∪ ∂Q1 ∪ ∂Q2)). However, this is a
contradiction because both Qi and cl(Vi−Ni) have incompressible boundary.

Claim 2: Q is irreducible.

Proof of Claim: Let F be a sphere in Q and assume without loss of
generality that F intersects S∪∂Q1∪∂Q2 transversally in a minimal number
of components. If F intersects any of ∂Q1, ∂Q2, or S, then there is an
innermost loop on F bounding a disk D that is a compressing disk for ∂Q1,
∂Q2, or S in cl(Q− (S ∪ ∂Q1 ∪ ∂Q2)). But this violates Claim 1. Thus F is
contained in some Qi or Vi −Qi. However, both the knot complements Qi

and the Vi −Qi are irreducible. Therefore Q is irreducible.

Now, recall that dimZ2(H1(M,Z2)) = genus(S). Also, it can be seen using
a Meyer-Vietoris sequence that replacing the handlebodies N1 and N2 by the
knot complements Q1 and Q2 does not change H1, since a meridional disk of
Ni is replaced by a Seifert surface inQi. Thus dimZ2(H1(Q,Z2)) = genus(S),
and hence Q has the properties required by the proposition.

In order to prove that we can find infinitely many such 3-manifolds Q,
we first show as follows that if Qi is the complement of a connected sum of
distinct knots K1#K2# . . .#Kn, then Q contains at least 2n disjoint non-
parallel incompressible tori. The first such torus is a boundary parallel torus
in Qi. The second such torus is a follow-swallow torus that swallows K1 and
follows the other n − 1 tori. The third swallows K1#K2 and follows the
other n − 2 and so on, each time swallowing one more knot and following
one less until the nth torus swallows all of the Kj with j 6= n. Since we
have n such disjoint tori in each Qi, this gives us 2n such disjoint tori in Q.
These tori cannot be parallel to each other since they bound distinct knot
complements in Qi.

To see that these 2n tori are incompressible in Q, suppose there is a
compressing disk for one of the tori that intersects ∂Q1∪∂Q2∪S transversally
in a minimal number of components. An innermost loop on the disk would
be a compressing disk for ∂Q1, ∂Q2 or S, again contradicting Claim 1.
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Thus the torus would have to be compressible in one of the Qi. But it is
well known that follow-swallow tori are incompressible in knot complements,
so the 2n tori must be incompressible in Q as well.

Thus Q contains 2n disjoint, non-parallel, incompressible tori. On the
other hand, it follows from Kneser-Haken finiteness, that for a given com-
pact, orientable manifold, such as Q, there is some finite constant t1 such
that Q cannot contain more than t1 disjoint closed, non-parallel, incom-
pressible surfaces (see, for example, Proposition 1.7 in [5]). Thus t1 > 2n.

To get a manifold Q′ which is not homeomorphic to Q, we replace each
Qi by the complement of a knot that is the connected sum of more than 1

2 t1
knots. Now Q′ will contain t2 disjoint, non-parallel, incompressible tori with
t2 > t1, and thus Q′ is distinct from Q. By repeating this process, we can
create an infinite sequence of such manifolds each containing more disjoint,
non-parallel, incompressible tori than the previous manifold did. �

Since every graph embeds in a closed orientable surface, the following
theorem is an immediate consequence of Proposition 1.

Theorem 2. For every graph γ, there are infinitely many closed, connected,
orientable, irreducible 3-manifolds M such that some embedding of γ in M
is pointwise fixed by an orientation reversing involution of M .

3. Determining the value of nM for a given M

Let M be a closed, connected, orientable, irreducible 3-manifold. We will
associate several constants with M that will help us determine the value
of nM . First, observe that we can apply the characteristic decomposition
theorem of Jaco-Shalen [10] and Johannson [12] to M to find a unique min-
imal family Ω of disjoint incompressible tori such that the closures of the
components obtained by splitting M along Ω are atoroidal or Seifert fibered.
If Ω 6= ∅ let t = |Ω|, and otherwise let t = 1.

For each Seifert fibered component Mi, let gi denote the genus of the
base surface Fi, let bi denote the number of boundary components of Fi,
and let wi = max{bi + 3gi− 3, 1}. By using a standard pants decomposition
argument (see, for example, [6]), we see that the surface Fi can contain at
most wi disjoint, non-parallel, non-boundary parallel, essential circles. This
implies that Mi contains at most wi disjoint, non-parallel, non-boundary
parallel, incompressible vertical tori (see Figure 2). Let w =

∑
wi taken

over all Seifert fibered components Mi. Then M contains at most w disjoint,
non-parallel, non-boundary parallel, incompressible tori which are vertical
in some Seifert fibered component.

Now let T be an incompressible torus in M . Then T can be isotoped to
be disjoint from the tori in the characteristic family Ω (see for example [4]).
Thus without loss of generality, we assume that T is contained in either an
atoroidal or a Seifert fibered component of M − Ω. If T is in an atoroidal
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vertical torus

base surface

Figure 2. A vertical torus in a Seifert fibered component.

component, then T is parallel to a torus in Ω. Hence there are at most
t = |Ω| disjoint, non-parallel, such tori in M . If T is in a Seifert fibered
component, then by Waldhausen [18], T must be parallel to either a vertical
or horizontal torus. As we saw above there are at most w disjoint, non-
parallel, such tori which are vertical in some Seifert fibered component. If
T is parallel to a horizontal torus in some Seifert fibered component, then
M is Seifert fibered with base surface a torus. In this case, there is only one
such torus, and w = wi = max{bi+3gi−3, 1} = 1. Thus there are at most w
disjoint, non-parallel tori in M which are either parallel to either a vertical
or horizontal torus in some Seifert fibered component. Hence altogether, M
has at most NM = t + w disjoint, non-parallel incompressible tori. Note
that since w ≥ 1 and t ≥ 1, we have NM ≥ 2.

Now for any closed, orientable, connected, irreducible 3-manifold M , we
define nM = dimZ2(H1(M,Z2)) + NM . We will refer to the constants nM
and NM in the statements and proofs of Theorem 3 and Proposition 2.

4. Intrinsic Chirality

The goal of this section is to prove our main result. We begin with the
following definition.

Definition 3. Let the genus of a graph γ be defined as the minimum value
of

2− χ(S)

2
=

dimZ2(H1(S,Z2))

2

over any surface S in which γ embeds.

It is worth pointing out that the genus of a non-orientable surface is
not consistently defined in the literature. Some papers use our preferred
definition, but others define the projective plane as having genus 1 instead
of 1

2 .

In the following proposition and subsequent theorem, we refer to the
values of NM and nM which were defined in Section 3.
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Proposition 2. Let γ be a 3-connected graph with genus at least 2, and
let Γ be an embedding of γ in a closed, connected, orientable, irreducible 3-
manifold M such that (M,Γ) has an orientation reversing homeomorphism
fixing every vertex of Γ.

Then there is an embedding Γ′ of γ in a closed, connected, orientable
3-manifold M ′ such that (M ′,Γ′) has an orientation reversing involution
pointwise fixing Γ′ and dimZ2(H1(M

′,Z2)) ≤ nM

The point of this proposition is that if we have an embedding Γ of a
graph γ in a manifold M such that (M,Γ) has an orientation reversing
homeomorphism, then we can find another manifold M ′ and an embedding
Γ′ of γ in M ′ such that (M ′,Γ′) has an orientation reversing involution.
Furthermore, even though M ′ might be homologically more complicated
than M , there is a bound on dimZ2(H1(M

′,Z2)) which depends only on M
and not on the graph γ or a particular embedding of γ in M .

Proposition 2 will be proved in the next section. We now prove Theorem 3
(restated below) by making use of Proposition 2 together with the following
result of Kobayashi.

Kobayashi’s Theorem. [13] Let X be a closed, orientable, 3-manifold ad-
mitting an orientation reversing involution h. Then

dimZ2(H1(fix(h),Z2)) ≤ dimZ2(H1(X,Z2)) + dimZ(H1(X,Z)).

Theorem 3. For every closed, connected, orientable, irreducible 3-manifold
M , there is an integer nM such that any abstract graph with no automor-
phism of order 2 which has a 3-connected minor λ with genus(λ) > nM is
intrinsically chiral in M .

Proof. Let γ be a graph with no automorphism of order 2. Suppose for the
sake of contradiction that γ has an achiral embedding Γ in the manifold M .
Let nM and NM be the constants associated with M that were defined in
Section 3. Let λ be a 3-connected minor of γ. We will now show that λ
satisfies the inequality

genus(λ) ≤ dimZ2(H1(M,Z2)) +NM = nM .

First observe that if genus(λ) ≤ 1, then the above inequality is immediate
since we saw in Section 3 that NM ≥ 2. Thus we assume that genus(λ) ≥ 2.

Since Γ is an achiral embedding of γ in M , there is an orientation reversing
homeomorphism f of the pair (M,Γ). Let ϕ denote the automorphism that
f induces on the graph Γ. Now even though f does not necessarily have
finite order, ϕ has finite order because Γ has a finite number of vertices.
Hence we can express the order of ϕ as 2rq, where r ≥ 0 and q is odd. Since
f is orientation reversing and q is odd, g = f q is also an orientation reversing
homeomorphism of (M,Γ). Now it follows that g induces the automorphism
ϕq on Γ and order(ϕq) = 2r. In particular, g2

r
fixes every vertex of Γ.
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If r ≥ 1, then g2
r−1

would induce an order two automorphism on Γ. As
we assumed that no such automorphism exists, we must have r = 0. Thus
g = g2

r
is an orientation reversing homeomorphism of (M,Γ) which fixes

every vertex of Γ.
Now let λ be a 3-connected minor of the abstract graph γ. Then by

deleting and/or contracting some edges of the embedding Γ of γ in M ,
we obtain an embedding Λ of λ in M . Furthermore, by composing the
homeomorphism g with an isotopy in a neighborhood of each edge that was
contracted, we obtain an orientation reversing homeomorphism of (M,Λ)
which fixes every vertex of Λ.

Since λ is a 3-connected graph with genus(λ) ≥ 2, we can now apply
Proposition 2 to get an embedding Λ′ of λ in a 3-manifold M ′ such that
(M ′,Λ′) has an orientation reversing involution h pointwise fixing Λ′ and

dimZ2(H1(M
′,Z2)) ≤ nM = dimZ2(H1(M,Z2)) +NM .

Let F be the component of the fixed point set fix(h) containing Λ′, and
let x ∈ Λ′. We put a metric d on M ′, and define a new metric d′ by
d′(x, y) = d(x, y) + d(h(x), h(y)). Then any neighborhood of x with respect
to the metric d′ will be setwise invariant under h. Now we can pick a
neighborhood N(x) with respect to d′ such that N(x) is homeomorphic to
a ball. Then by Smith theory [15], since h|N(x) is an orientation reversing
involution of the ball N(x), the fix point set of h|N(x) is either a single point
or a properly embedded disk. Since N(x)∩Λ contains more than one point,
fix(h|N(x)) is a properly embedded disk, and hence F is a closed surface.
Thus

genus(λ) ≤ genus(F ) =
2− χ(F )

2

=
dimZ2(H1(F,Z2))

2
≤ dimZ2(H1(fix(h),Z2))

2
.

Hence we have the inequality

2genus(λ) ≤ dimZ2(H1(fix(h),Z2).

Also, since h is an orientation reversing involution and M ′ is a closed
orientable manifold, we can apply Kobayashi’s Theorem [13] to obtain the
inequality

dimZ2(H1(fix(h),Z2)) ≤ dimZ2(H1(M
′,Z2)) + dimZ(H1(M

′,Z)).

It follows that

dimZ2(H1(fix(h),Z2)) ≤ 2dimZ2(H1(M
′,Z2)).

Combining the above inequalities, we now have

genus(λ) ≤ dimZ2(H1(M
′,Z2)).
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But M ′ was given by Proposition 2 such that

dimZ2(H1(M
′,Z2)) ≤ dimZ2(H1(M,Z2)) +NM .

Hence we obtain the required inequality

genus(λ) ≤ dimZ2(H1(M,Z2)) +NM = nM .

It now follows that if γ has a 3-connected minor whose genus is greater than
nM , then γ must be intrinsically chiral in M . �

5. Proof of Proposition 2

For the sake of completeness, we begin by proving the following elemen-
tary lemma that we will use in the proof of Proposition 2.

Lemma 1. Let S be a punctured sphere with n ≥ 3 boundary components
{c1, c2 . . . cn}. Let {s1, s2 . . . sm} be disjoint embedded loops on S each par-
allel to some ci and let {α1, . . . , αt} be disjoint annuli on S−

⋃m
i=1 si. Then

the closure of some component of S− (
⋃m

i=1 si ∪
⋃t

i=1 αi) is a sphere with at
least three holes.

Proof. First note that cl(S−
⋃m

i=1 si) consists of n annuli and a sphere with
n ≥ 3 holes. Call the closure of this sphere with holes F1. Any annuli αi

that are not in F1 are thrown out of the collection {α1, . . . , αt} to get a
possibly smaller collection {α1, . . . , αr}. Now it suffices to prove that the
closure of some component of F1 − (

⋃m
i=1 si ∪

⋃r
i=1 αi) is a sphere with at

least three holes.
Observe that the total number of boundary components of cl(F1 − α1)

is n + 2. There are three possible cases for these components. First, one
component of cl(F1−α1) could be a disk D1. In this case, the total number
of boundary components of cl(F1 − (α1 ∪ D1)) is n + 1 ≥ 3. Second, one
component of cl(F1 − α1) could be an annulus A1, in which case the total
number of boundary components of cl(F1− (α1∪A1)) is still n ≥ 3. Finally,
if neither component of cl(F1−α1) is a disk or an annulus, then α1 splits F
into two punctured spheres each with at least three boundary components.
Let F2 denote the closure of one of these spheres with at least three holes.

We repeat the above paragraph inductively to conclude that the closure
of some component of S− (

⋃m
i=1 si ∪

⋃t
i=1 αi) is a sphere with at least three

holes. �

We will also use the well known “Half Lives, Half Dies” Theorem, which
we state below. See [7] or [5] for a proof of this theorem.

Theorem 4. (Half Lives, Half Dies) Let M be a compact orientable 3-
manifold. Then the following equation holds with any field coefficients

dim (Kernel(H1(∂M)→ H1(M))) =
1

2
dimH1(∂M).
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Corollary 1. Let M be a manifold which has a torus boundary component
T . Then for any pair of generators a and b of H1(T,Z2), at least one of a
and b is non-trivial in H1(M,Z2).

Proof. Suppose for the sake of contradiction that the generators a and b
are both trivial in H1(M,Z2). Attach handlebodies to all boundary com-
ponents of M except T to form a new manifold J with a single boundary
component. Then a and b are both trivial in H1(J,Z2). Since a and b
generate the homology of the only boundary component of J , we see that
dim (Kernel(H1(∂J,Z2))→ H1(J,Z2)) = dimZ2(H1(∂J,Z2)) = 2. But this
contradicts the Half Lives, Half Dies Theorem. Thus at least one of the
generators of H1(T,Z2) must have been non-trivial in M . �

Note that it is tempting to assume that the Half Lives, Half Dies Theorem
implies that one of a or b must be trivial in J . But this is not always true.
In particular, let M denote the product of a torus and an interval. Then no
single non-trivial curve in the boundary of M is in the kernel.

Now we are ready to prove Proposition 2. Recall that the definition of
the constant nM is given in Section 3.

Proposition 2. Let γ be a 3-connected graph with genus at least 2, and
let Γ be an embedding of γ in a closed, connected, orientable, irreducible 3-
manifold M such that (M,Γ) has an orientation reversing homeomorphism
g fixing every vertex of Γ.

Then there is an embedding Γ′ of γ in a closed, connected, orientable
3-manifold M ′ such that (M ′,Γ′) has an orientation reversing involution
pointwise fixing Γ′ and dimZ2(H1(M

′,Z2)) ≤ nM .

Proof. Let Λ denote either Γ or Γ with one edge deleted. Suppose that Λ
is contained in a ball B in M . Since g fixes every vertex of Λ, without loss
of generality, we can assume that Λ is pointwise fixed by g. Furthermore,
since g(B) is isotopic to B in M , we can assume that g leaves B setwise
invariant. Let f be an embedding of (B,Λ) in S3. Then f ◦ g ◦ f−1 is an
orientation reversing homeomorphism of f(B) pointwise fixing f(Λ). Now,
f ◦ g ◦ f−1 can be extended to an orientation reversing homeomorphism of
S3 pointwise fixing f(Λ).

However, Jiang and Wang [11] showed that no graph containing one of
the graphs K3,3 or K5 has an embedding in S3 which is pointwise fixed by
an orientation reversing homeomorphism of S3. Thus Λ cannot contain K3,3

or K5, and hence is abstractly planar. But this implies that genus(Γ) ≤ 1,
which is contrary to hypothesis. Thus neither Γ nor Γ with an edge deleted
can be contained in a ball in M . We will use this result later in the proof.

Since the remainder of the proof is quite lengthy, we break it into steps.

Step 1: We define a neighborhood N(Γ).
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Let V and E be the sets of vertices and edges of Γ respectively. For
each vertex v ∈ V , define N(v) to be a ball around v in M (i.e., a 0-
handle containing v), and let N(V ) denote the union of the balls around the
vertices. Also, for each edge e ∈ E, let N(e) = D× I be a solid tube around
cl(e − N(V )) in M (i.e., a 1-handle containing the portion of e outside of
the 0-handles). Let N(E) denote the union of the tubes around the edges.
Then for each e in N(E) the intersection N(V )∩N(e) follows the standard
convention for attaching 1-handles to 0-handles. In other words, in N(e)
this intersection consists of the disks D × {0} and D × {1} and in N(V )
this intersection consists of these disks in the boundaries of the balls. Then
N(Γ) = N(E) ∪N(V ) is a neighborhood of Γ.

For convenience we introduce the following terminology. For each vertex
v, we let ∂′N(v) denote the sphere with holes ∂N(v)∩ ∂N(Γ), and for each
edge e we let ∂′N(e) denote the annulus ∂N(e) ∩ ∂N(Γ). Thus ∂N(Γ) =
∂′N(E) ∪ ∂′N(V ).

Now since g(Γ) = Γ fixing each vertex of Γ, we know that g(N(Γ)) is
isotopic to N(Γ) setwise fixing Γ and fixing each vertex. Thus we can mod-
ify g by an isotopy (and by an abuse of notation, still refer to the map
as g) so that for each vertex v and edge e we have g(N(v)) = N(v) and
g(N(e)) = N(e). Because this modification was by an isotopy, our new g is
still orientation reversing.

Step 2: We split cl(M − N(Γ)) along a family τ of JSJ tori and
choose an invariant component X.

Since M is irreducible and we have assumed that Γ is not contained in
a ball, cl(M − N(Γ)) is irreducible. Thus we can apply the Characteristic
Decomposition Theorem of Jaco-Shalen [10] and Johannson [12] to get a
minimal family of incompressible tori τ for cl(M − N(Γ)) such that each
closed up component of M − (N(Γ)∪τ) is either Seifert fibered or atoriodal.
Since the characteristic family τ is unique up to isotopy, we can again modify
g by an isotopy (and again by an abuse of notation still refer to the map as g)
so that g(τ) = τ and still have g(N(v)) = N(v) and g(N(e)) = N(e) for each
vertex v and edge e. Let X be the closed up component of M − (N(Γ)∪ τ)
containing ∂N(Γ) (see for example Figure 3). Then g(X) = X.

Also, since Γ is 3-connected, genus(∂N(Γ)) > 1. Thus the component
X is not Seifert fibered, and hence is atoroidal. Let P denote the set of
torus boundary components of X together with the annuli that make up
the components of ∂′N(E). Since Γ is 3-connected, ∂X − P = ∂N(Γ) −
∂′N(E) = ∂′N(V ) is incompressible in cl(M−N(Γ)). It follows that ∂X−P
is incompressible in X. Furthermore, X is irreducible since cl(M −N(Γ)) is
irreducible and X is a component of the JSJ decomposition of cl(M−N(Γ)).

Step 3: We show that any sphere obtained by capping off an
annulus in the JSJ decomposition of (X,P ) bounds a ball in M
intersecting at most one edge of Γ−N(V ).
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incompressible torus
X

N(   )Γ

Figure 3. X is the closed up component of M − (N(Γ)∪ τ)
between the grey incompressible torus and the black ∂N(Γ).

We now apply the Characteristic Decomposition Theorem for Pared Man-
ifolds [10, 12] to the pared manifold (X,P ). Since X is atoroidal, this gives
us a characteristic family σ of incompressible annuli in X with boundaries
in ∂X−P such that if W is the closure of any component of X−σ, then the
pared manifold (W,W∩(P∪σ)) is either simple, Seifert fibered, or I - fibered
(see [1] for the necessary definitions). Once again, since the characteristic
family σ is unique up to isotopy, we can modify g by an isotopy (and again
by an abuse of notation, still refer to the map as g) so that g(σ) = σ.

Let A be an annulus component of P ∪ σ, and let S denote the sphere
obtained by capping off A by a pair of disjoint disks D1 and D2 in ∂N(v1)
and ∂N(v2), where v1 and v2 may or may not be distinct vertices. Suppose
that each component of M − S intersects more than one edge of Γ−N(V ).
Then by removing the vertices v1 and v2 and the edges that contain them we
would obtain two non-empty subgraphs (see Figure 4). But this contradicts
our hypothesis that Γ is 3-connected. Thus one of the components of M −S
meets Γ−N(V ) in at most one edge of Γ.

annulus

N(v )
3

N(v )
2

N(v )
1

Figure 4. There is more than one edge on each side of this
capped off annulus.



INTRINSIC CHIRALITY OF GRAPHS IN 3-MANIFOLDS 13

Now, since M is irreducible, one of the closed up components of M −S is
a ball B. However, we assumed at the beginning of our proof that neither
Γ nor Γ with an edge removed can be contained in a ball in M . Thus B
must be the closed up component of M − S intersecting at most one edge
of Γ − N(V ). Furthermore, since the annulus A is incompressible in X,
if v1 6= v2 then there is some edge e with vertices v1 and v2 such that B
contains cl(e− (N(v1) ∪N(v2))). On the other hand, if v1 = v2, then since
Γ is a graph B must be disjoint from Γ−N(V ).

Note that since a ball cannot contain an incompressible torus, no torus
boundary component of X can occur in one of these balls. It follows that
every torus component of ∂X must also be a component of ∂W .

Step 4: We define a collection of balls Ue1, . . . , Uen, VF1, . . . , VFm

in M such that every annulus in P ∪ σ is contained in some Uei if
its boundaries are in distinct components of ∂N(V ), and in some
VFj if its boundaries are in a single component of ∂N(V ).

Let A be an annulus in P ∪σ with one boundary in ∂N(v1) and the other
boundary in ∂N(v2) with v1 6= v2. By capping off A with disks in N(v1)
and N(v2) we obtain a sphere, which as we saw in Step 3, bounds a ball
B that contains cl(e − (N(v1) ∪ N(v2))) for some edge e in Γ. Now let Ce
denote the collection of all annuli in P ∪ σ with one boundary in ∂N(v1)
and the other boundary in ∂N(v2). By capping off the annuli in Ce with
pairwise disjoint disks in N(v1) and N(v2), we obtain a collection of disjoint
spheres which bound nested balls containing cl(e − (N(v1) ∪ N(v2))). Let
Ae denote the annulus in Ce which when capped off in this way is outermost
with respect to this nesting. Observe that the boundaries of Ae also bound
disks D1 ⊆ ∂N(v1) and D2 ⊆ ∂N(v2) which each meet Γ in a single point
of e. Now the sphere Ae ∪D1 ∪D2 bounds a ball Ue in M which contains
both cl(e− (N(v1) ∪N(v2))) and every annulus in Ce.

We repeat the above paragraph for each annulus in P ∪σ with boundaries
in distinct components of ∂N(V ) to get a collection of pairwise disjoint balls
Ue1 , . . . , Uen such that Ue1 ∪· · ·∪Uen contains both cl(Γ−N(V )) and every
annulus in P ∪σ with boundaries in distinct components of ∂N(V ). Observe
that for every edge e, the annulus ∂′N(e) is in P . Thus every edge e is
contained in some Ue.

Next we consider an annulus F in σ which has both boundaries in a single
component of ∂N(V ). We saw in Step 3 that if we cap off F by any pair
of disjoint disks in N(V ) we obtain a sphere which bounds a ball that is
disjoint from Γ−N(V ). We can now cap off every such annulus by pairwise
disjoint disks properly embedded in N(V ) such that the balls we get are
disjoint from the set of vertices V . Since the annuli in σ are disjoint and the
pairs of disks are disjoint, pairs of balls we obtain in this way will either be
nested or disjoint. Thus for each annulus in σ with boundaries in a single
component of ∂N(V ), we can choose an annulus F ∈ σ which when capped
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off bounds an outermost ball VF with respect to the nesting of the collection
(see Figure 5).

N(v)

V
F

Ue1

Ue2

Ue3

Figure 5. VF is an outermost ball.

In this way we get a collection of disjoint balls VF1 , . . . , VFm such that
VF1 ∪ · · · ∪ VFm contains every annulus in σ with boundaries in a single
component of ∂N(V ). Furthermore, each such ball VFi is disjoint from
Γ − N(V ), V , and from Ue1 ∪ · · · ∪ Uen . Note that each Uej ⊆ X and has
only one boundary component; and each VFi ∩ X has only one boundary
component. Thus both X − Uej and X − VFi have a single component. It
follows that the manifold

W = cl(X − (Ue1 ∪ · · · ∪ Uen ∪ VF1 ∪ · · · ∪ VFm))

is the closure of a single component of X − σ (see Figure 6).

W

Ue
1

VF

Ue
2

Ue
3

Ue
4

Ue
5

Ue
6

Ue
7

Ue
8

Ue
9

Ue
10

Ue
11

Figure 6. W is the closure of a single component of X − σ.

Step 5: We show that g(W ) = W and (W,W ∩ (P ∪ σ)) is simple as
a pared manifold.
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Recall that g fixes each vertex and leaves each edge setwise invariant.
Also, g(N(Γ)) = N(Γ), g(P ) = P , and g(σ) = σ. Now, since the sets of
balls {Ue1 , . . . , Uen} and {VF1 , . . . , VFm} were chosen to be outermost, each
of these sets is invariant under g. Furthermore, we know from Step 4 that
each Uej intersects Γ − N(V ) only in ej . Now since each edge is fixed by
g, both Aej and Uej are setwise invariant under g; and since each vertex is
fixed by g, each boundary component of Aej is also setwise invariant under g.
Now let v be a vertex such that some Fi has both its boundary components
in ∂N(v). Since Fi is incompressible in X, each component of ∂Fi bounds a
disk in ∂N(v) which contains a boundary component of some Uej . Since the
boundary components of each Uej are setwise invariant under g, it follows
that Fi and its boundary components are also setwise invariant under g.
ThusVFi is setwise invariant under g. Finally, since all of the Uej and VFi

are invariant under g, we know that W must be setwise invariant under g
as well.

To show that the pared manifold (W,W ∩ (P ∪ σ)) is simple, first recall
that W is the closure of a single component of X − σ. Hence by JSJ for
pared manifolds [10, 12], (W,W ∩ (P ∪σ)) is either I-fibered, Seifert fibered,
or simple as a pared manifold. We see that (W,W ∩ (P ∪ σ)) cannot be
Seifert fibered or I-fibered as follows.

First observe that for every vertex v, there is some edge e such that the
ball Ue meets ∂N(v). It follows that ∂W meets every component of ∂N(V ).
Furthermore, since every vertex v has valence at least three, ∂′N(v) is a
sphere with at least three holes. Also each Uej contains at most one bound-
ary component of ∂′N(v), and each VFi contains no boundary components of
∂′N(v). Hence by Lemma 1, some component of W ∩∂N(v) is a sphere with
at least three holes. It follows that the component of ∂W meeting ∂N(Γ)
has genus more than one, and thus the pared manifold (W,W ∩ (P ∪ σ))
cannot be Seifert fibered.

Next suppose for the sake of contradiction that the pared manifold (W,W∩
(P ∪ σ)) is I-fibered. By definition of I-fibered for pared manifolds, this
means that there is an I-bundle map of W over a base surface Y such that
W ∩ (P ∪ σ) is in the pre-image of ∂Y . It follows that Y must be home-
omorphic to a component of ∂′N(V ). This means that the base surface
Y must be a sphere with holes. Now since M is orientable, in fact W is
a product Y × I. Thus W ∩ (P ∪ σ) = ∂Y × I, and Y0 = Y × {0} and
Y1 = Y × {1} are components of ∂′N(V ) ∩W . However, since ∂W meets
every component of ∂N(V ), this means that Γ contains at most two ver-
tices. But this contradicts our hypothesis that Γ is 3-connected. Therefore,
the pared (W,W ∩ (P ∪ σ)) is not I-fibered, and since it is also not Seifert
fibered, it must be simple.

Step 6: We prove that g|W is isotopic to an orientation reversing
involution h of (W,W ∩ (P ∪ σ)).



16 E. FLAPAN, H.N. HOWARDS

Now it follows from Thurston’s Hyperbolization Theorem for Pared Man-
ifolds [17] applied to the simple pared manifold (W,W ∩ (P ∪ σ)) that
W − (W ∩ (P ∪ σ)) admits a finite volume complete hyperbolic metric with
totally geodesic boundary. Let D denote the double of W − (W ∩ (P ∪ σ))
along its boundary. Then D is a finite volume hyperbolic manifold, and
g|W can be doubled to obtain an orientation reversing homeomorphism of
D (which we still call g) taking each copy of W − (W ∩ (P ∪ σ)) to itself.
Now by Mostow’s Rigidity Theorem [14] applied to D, the homeomorphism
g : D → D is homotopic to an orientation reversing finite order isometry
h : D → D that restricts to an isometry of W − (W ∩ (P ∪σ)). By removing
horocyclic neighborhoods of the cusps of W − (W ∩ (P ∪ σ)), we obtain a
copy of the pair (W,W ∩ (P ∪ σ)) which is contained in W − (W ∩ (P ∪ σ))
and is setwise invariant under h. We abuse notation and now consider h to
be an orientation reversing finite order isometry of (W,W ∩ (P ∪σ)) instead
of this copy. Furthermore, h induces isometries on the collection of tori and
annuli in W ∩ (P ∪ σ) with respect to a flat metric. Furthermore, the sets
∂′N(V ) ∩W , ∂′N(E) ∩W , and τ ∩W are each setwise invariant under h.
Finally, it follows from Waldhausen’s Isotopy Theorem [19] that h is isotopic
to g|W by an isotopy leaving W ∩ (P ∪ σ) setwise invariant.

Now, recall that the boundary components of W consist of tori in τ , and
the union of spheres with holes in ∂′N(V ) together with annuli in P ∪ σ.
Recall from Step 5 that g leaves setwise invariant each annulus Aej ⊆ ∂Uej

with boundaries in distinct components of ∂N(V ), each annulus Fi ⊆ ∂VFi

with both boundaries in a single component of ∂N(V ), each component of
∂Aej , and each component of ∂Fi. Since h is isotopic to g|W by an isotopy
leaving W ∩ (P ∪ σ) setwise invariant, h leaves invariant the same sets as g.
It follows that for each vertex v, we have h(∂′N(v)) ∩W ) = ∂′N(v) ∩W ,
and h takes each component of W ∩ ∂N(v) to itself, leaving each boundary
component setwise invariant.

Since h has finite order, h restricts to a finite order homeomorphism of
every component of W ∩ ∂N(V ). We saw in Step 5 that for every vertex
v, at least one component Cv of W ∩ ∂N(v) is a sphere with at least three
holes. Since h restricts to a finite order homeomorphism of Cv taking each
boundary component of Cv to itself, h must be a reflection of Cv which
also reflects each component of ∂Cv. Now h2 is a finite order, orientation
preserving isometry of W that pointwise fixes the surface Cv. It follows that
h2 is the identity, and hence h is an involution of W .

Step 7: We extend h to an orientation reversing involution of
X ∪N(Γ) which pointwise fixes a new embedding Γ′ of γ.

Observe that since every annulus in P ∪ σ is incompressible in W , no
component of W ∩ ∂N(V ) can be a disk. Thus every component of W ∩
∂N(V ) is either an annulus or a sphere with at least three holes. As we saw in
Step 6, for each vertex v, h reflects some component Cv of W ∩∂N(v) which
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is a sphere with at least three holes, and h reflects every component of ∂Cv.
Let b0 denote some boundary component of Cv. Then b0 is also a boundary
component of either an annulus Aej or an annulus Fi. Since h reflects b0, we
know that h must also reflect the annulus Aej or Fi, whichever contains b0
in its boundary. Since the boundaries of the annulus are not interchanged,
h must also reflect each boundary component of Aej or Fi. Below we extend
h to Uej or VFi .

First we consider the case where b0 is in the boundary of an annulus
Aej ⊆ ∂Uej . Let Dj and D′j denote the disks in cl(∂Uej − Aej ). Then Dj

and D′j each meet Γ in a single point of ej . Since h reflects the annulus Aej

together with each boundary component of Aej , we can extend h radially to
the disks Dj and D′j to get a reflection of the sphere Aej ∪Dj ∪D′j pointwise

fixing a circle containing the points Dj ∩ ej and D′j ∩ ej . Recall that the

sphere Aej ∪Dj ∪D′j bounds the ball Uej in M . Now, we can express Uej

as a product Dj × I whose core ej has endpoints Dj ∩ ej and D′j ∩ ej (see

Figure 7). Now we extend h from a reflection of the sphere Aej ∪Dj ∪D′j
to a reflection of the product Dj × I which pointwise fixes the core ej .

Ue j Ue j
e j

e j

Figure 7. We can think of Uej as a product Dj × I with core ej .

Next we consider the case where b0 is a boundary component of an an-
nulus Fi ⊆ ∂VFi which has both boundaries in a single ∂N(v). Recall that
cl(∂VFi −Fi) consists of disks Di and D′i properly embedded in N(v). Since
h reflects the annulus Fi together with each of its boundary components,
we can extend h radially to the disks Di and D′i to get a reflection of the
sphere Fi ∪Di ∪D′i pointwise fixing a circle containing all of the points of
Γ ∩Di and Γ ∩D′i. Recall that VFi ∩ Γ is a collection of one or more arcs.
Thus we can extend h to a reflection of the ball VFi which pointwise fixing
a disk containing VFi ∩ Γ (see Figure 8).

Now the extension of h reflects the sphere with holes Cv, and one of the
balls Uej or VFi depending on whether b0 is a boundary component of Aej

or Fi, respectively. Next we let S1 denote the union of Cv together with the
annulus Aej or Fi glued along b0. Now h reflects S1 taking every boundary
component of S1 to itself, and hence reflecting every boundary component of
S1. Let b1 be a boundary component of S1. If b1 is not the other boundary
of the annulus Aej or Fi, then we repeat the above argument with b1 in
place of b0. If b1 is the other boundary of the annulus Aej or Fi, then b1 is
also a boundary of some other component S′1 of W ∩ ∂N(V ), as illustrated
in Figure 9. In this case, since b1 is reflected by h and every component of



18 E. FLAPAN, H.N. HOWARDS

D

N(v)

D'
b

Fi

0

ej

i

i

fix

V

Figure 8. We extend h to a reflection of the ball VFi which
pointwise fixes Γ ∩ VFi .

S′1 is invariant under h, we know that h must reflect S2 = S1 ∪ S′1. Now
let b2 denote a boundary component of S2, and repeat the above argument
with b2 in place of b0.

b1

Cv

S1'

b0

Aej
b2

Figure 9. In this illustration, we have three choices for the
boundary component b2 of S2 = S0 ∪Aej ∪ S′1.

In general, for a given surface Sn obtained in this way, the surface Sn+1

is the union of Sn together with either an annulus of the form Aej or Fi

or a sphere with at least two holes contained in W ∩ ∂N(V ). Furthermore,
Sn+1 is reflected by h. This process will only stop when the surface that we
obtain has no boundary components. Since ∂W has only one component
which intersects ∂N(V ), the closed surface that we obtain in this way must
be ∂W . Thus we have extended h to an orientation reversing involution of
each of the balls Ue1 , . . . , Uen , VF1 , . . . , VFm .

Now let N = N(V )− (VF1 ∪ · · · ∪VFm). Then N is a collection of disjoint
balls (for example in Figure 8, N(v)−VFi is two balls one of which contains
v). Also, h is a reflection of each component of ∂N that fixes each point in
∂N ∩ Γ. Now we extend h radially to a reflection of each ball of N in such
a way that h pointwise fixes each component of N ∩Γ. Thus h is defined as
a reflection of each component of N(V ) which pointwise fixes N(V ) ∩ Γ.

We have now extended h to an orientation reversing involution of the
manifold
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Y = W ∪ VF1 ∪ · · · ∪ VFm ∪ Ue1 ∪ · · · ∪ Uen ∪N.
Recall from the end of Step 3 that ∂X and ∂W have the same collection

of tori in their boundary components. Furthermore, we have filled in the
boundary component of W meeting ∂N(Γ) with a collection of balls in X
and N(Γ). Thus in fact Y = X ∪N(Γ).

Finally, we define a new embedding Γ′ of γ in X ∪N(Γ) as follows. Let
Γ′ ∩ N(V ) = Γ ∩ N(V ). Then for each edge ej define an embedding of
ej −N(V ) in Γ′ as the core ej of Uej = Dj × I, which we know is pointwise
fixed by h according to the way we extended h to Uej (recall Figure 7).

Step 8: We prove that if an essential curve in a component of
∂(X ∪N(Γ)) compresses in M , then it compresses in X ∪N(Γ).

Let {T1, . . . , Tr} denote the set of boundary components of X ∪ N(Γ).
These tori are contained in the characteristic family τ , and hence are in-
compressible in cl(M −N(Γ)).

Suppose that an essential curve λi on some Ti compresses in M . Let Di be
a compressing disk for λi whose intersection with the set of tori {T1, . . . , Tr}
is minimal. Let D = Di if the interior of Di is disjoint from Ti. Otherwise,
there exists some D in the interior of Di such that Di is a compressing disk
for Ti whose interior is disjoint from Ti. In either case, the intersection of
D with {T1, . . . , Tr} is minimal.

Suppose that D contains at least one curve of intersection in its interior.
Hence there is an innermost disk ∆ on D which is a compressing disk for
some Tj with j 6= i. Since Tj compresses in M but is incompressible in
cl(M −N(Γ)), we know that ∆ intersects Γ.

Since M is irreducible, any compressible torus is separating in M . Thus
we can let Xj denote the closed up component of M − Tj containing X
and let Vj denote the closed up component of M − Tj whose interior is
disjoint from X. Now let S denote the region of D which is adjacent to the
innermost disk ∆. Then S ⊆ Vj , since ∆ ⊆ Xj . Also, ∂D ⊆ Ti ⊆ X ⊆ Xj

implies that S is adjacent to another region of D which is contained in Xj .
In particular, there must be another circle of intersection α of D ∩Tj which

bounds a disk D ⊆ D containing ∆ ∪ S. We illustrate the abstract disk D
and its intersections with Tj in Figure 10. The white regions in the figure
are contained in Vj , and the grey regions are contained in Xj . Note we do
not include any circles of intersection of D with any Tk with k 6= j.

Now, since the intersection of D with the tori T1,. . . , Tr is minimal, all of
the curves of intersection of D ∩ Tj must be essential on Tj . In particular,
∂∆ and α must both be essential on Tj . Since there cannot be two essential,
disjoint, non-parallel curves on a torus, this means that α is parallel to ∂∆
on Tj . It follows that α must bound a disk ∆ which is parallel to ∆ in M .
In particular, since the interior of ∆ is disjoint from T1,. . . , Tr, the interior
of ∆ is as well. But now by replacing the disk D with the disk ∆ in the
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Figure 10. A picture of the abstract disk D and its circles
of intersection with Tj .

compressing disk D we obtain a new compressing disk D′ which has fewer
curves of intersection with T1,. . . , Tr than D has. From this contradiction
we conclude that the interior of D must be disjoint from T1 ∪ · · · ∪ Tr, and
hence D ⊆ X ∪N(Γ).

If ∂D = λi, then λi compresses in X ∪N(Γ) as required. Otherwise, the
compression disk D was contained in the interior of the original disk D1

and ∂D ⊆ Ti. In this case, since the intersection of D1 with the set of tori
{T1, . . . , Tr} was minimal, ∂D is essential in Ti. But now ∂D and λi are
disjoint essential curves on Ti. Hence as we saw above, the disks D and D1

must be parallel in M . Now, since D ⊆ X ∪ N(Γ), it follows that λi must
compress in X ∪N(Γ) as well.

Step 9: We fill each component Ti of ∂(X ∪ N(Γ)) with a solid
torus such that the manifold M ′ that we get satisfies the condition
below.

Condition: If Ti is compressible in M , then both generators of H1(Ti,Z2)
are trivial in H1(M

′,Z2), and if Ti is incompressible in M then at least one
generator of H1(Ti,Z2) is trivial in H1(M

′,Z2).

Let Ti be a component of ∂(X ∪N(Γ)). By Corollary 1 there is a curve
µi on Ti which is non-trivial in H1(X ∪ N(Γ),Z2). Also, we know from
Step 8 that if some essential curve λi on Ti compresses in M , then λi also
compresses in X ∪N(Γ). In particular, λi is not homologous in Ti to µi.

Now suppose that for some j 6= i, the involution h interchanges Ti and
Tj . Since h : X ∪ N(Γ) → X ∪ N(Γ) is a homeomorphism and µi is a
curve on Ti which is non-trivial in H1(X ∪ N(Γ),Z2), we know that h(µi)
is a curve on Tj which is also non-trivial in H1(X ∪N(Γ),Z2). Now we fill
X ∪N(Γ) along Ti by adding a solid torus Vi with its meridian attached to
the non-trivial curve µi, and we fill along Tj by adding a solid torus Vj with
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its meridian attached to h(µi). Then we extend the involution h radially
on Vi ∪ Vj (abusing notation and still calling the involution h). We repeat
this process for every component of X ∪N(Γ) which is not setwise invariant
under h. As a result, for every Ti along which we have glued a solid torus
Vi, the curve µi on Ti is trivial in H1(X ∪ N(Γ) ∪ Vi,Z2). Furthermore,
if Ti is compressible in M , then there is an essential curve λi on Ti which
compresses in X∪N(Γ). Now, λi is not homologous to µi in H1(Ti,Z2), and
together they generate H1(Ti,Z2). Furthermore, both λi and µi are trivial
in H1(X ∪N(Γ) ∪ Vi,Z2)

Let Z be the manifold that we have obtained by filling all of the boundary
components of X ∪N(Γ) which are not setwise fixed by h, and let Ti be a
component of ∂Z. Recall from Step 7 that Γ′ is an embedding of γ in
X ∪N(Γ) which is pointwise fixed by h. Now h : Z → Z is an orientation
reversing involution pointwise fixing Γ′, and Ti is setwise invariant under
h. Since h|Ti is an order 2 isometry of a torus, h|Ti is either a reflection
pointwise fixing two parallel circles on Ti, a rotation pointwise fixing four
points of Ti, or a rotation fixing no points of Ti. In each of these cases, there
is a pair of generators of H1(Ti,Z2) each of which is homologous to its image
under h. It follows that for any given generator ai of H1(Ti,Z2) (which may
or may not be homologous to h(ai) in H1(Ti,Z2)), there is a curve bi on Ti
such that 〈ai, bi〉 = H1(Ti,Z2) and h(bi) is homologous to bi in H1(Ti,Z2).

Now suppose that some essential curve λi on Ti compresses in M . Then
by Step 8, λi also compresses in X∪N(Γ), and hence in Z. We can now pick
a curve bi on Ti such that 〈λi, bi〉 = H1(Ti,Z2) and h(bi) is homologous to
bi in H1(Ti,Z2). Since λi is null homologous in Z, by Corollary 1, bi is non-
trivial in H1(Z,Z2). Now we fill Z along Ti by adding a solid torus Vi with
its meridian attached to the non-trivial curve bi. Since h(bi) is homologous
to bi in H1(Ti,Z2), we can extend h radially to the solid torus Vi. Then
h : Z ∪ Vi → Z ∪ Vi is an orientation reversing involution, and both λi and
bi are trivial in H1(Z ∪ Vi,Z2).

Now suppose that some Ti is incompressible in M . As we saw above,
there is a pair of generators of H1(Ti,Z2) each of which is homologous in
Ti to its image under h. By Corollary 1, at most one of these generators is
null homologous in Z. So there is some curve bi on Ti which is non-trivial
in H1(Z,Z2) and homologous to h(bi) on Ti. Now fill Ti by adding a solid
torus Vi with its meridian attached to the curve bi and extend h to Vi. Then
h : Z ∪ Vi → Z ∪ Vi is again an orientation reversing involution, and bi is
trivial in H1(Z ∪ Vi,Z2).

In this way, we glue a solid torus to each of the Ti in ∂(X∪N(Γ)) to obtain
a closed manifold M ′ satisfying the required condition. Since Γ′ ⊆ X∪N(Γ),
this gives us an embedding Γ′ of γ in M ′. Furthermore, we have extended
h to an orientation reversing involution of (M ′,Γ′) which pointwise fixes Γ′.

Step 10: We prove that there are at most NM tori in ∂(X ∪N(Γ))
which are incompressible in M .
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First suppose that some pair of distinct components Ti and Tj of ∂(X ∪
N(Γ)) are parallel in M . Then Ti and Tj co-bound a region R in M which
is homeomorphic to a product of a torus and an interval. However, since Ti
and Tj are tori in the characteristic family for cl(M − N(Γ)), they cannot
be parallel in cl(M −N(Γ)). Thus R intersects Γ. But since ∂R = Ti ∪ Tj
and Γ is disjoint from Ti ∪ Tj , this implies that Γ ⊆ R.

Suppose that X ∪N(Γ) has a boundary component Tk which is distinct
from Ti and Tj . Since X ∪ N(Γ) is a connected set which contains Γ and
has Ti, Tj , and Tk among its boundary components, Tk must be contained
in R. But since R ∼= T × I, either Tk is parallel in M to both Ti and Tj
or Tk bounds a solid torus V ⊆ R. The former would imply that Tk is
parallel to one of Ti or Tj in cl(M − N(Γ)), which is impossible since all
three are in the characteristic family for cl(M −N(Γ)). However, the latter
would imply that N(Γ) ⊆ V because otherwise Tk would be compressible in
cl(M − N(Γ)). But, this is impossible since ∂N(Γ), Tk, Ti, and Tj are all
boundary components of X. Hence we must have ∂(X ∪ N(Γ)) = Ti ∪ Tj .
Since we saw in Section 3 that NM ≥ 2, it now follows that ∂(X ∪ N(Γ))
has at most NM components as required. Thus we can assume that no pair
of distinct components of ∂(X ∪N(Γ)) are parallel in M .

Let Ti be a component of ∂(X ∪ N(Γ)) which is incompressible in M .
Since Ω is the characteristic family of tori for M , we know that Ti can be
isotoped to be disjoint from Ω (see for example [4]). Thus, without loss of
generality, we can assume that Ti is contained in a closed up component of
M − Ω which is either atoroidal or Seifert fibered. If Ti is in an atoroidal
component, then Ti is parallel to a torus in Ω. If Ti is in a Seifert fibered
component, then it follows from Waldhausen [18] that Ti is parallel to either
a torus in Ω or a vertical or horizontal torus of the fibration.

Since no pair of distinct components of ∂(X ∪ N(Γ)) are parallel in M ,
there are at most t = |Ω| incompressible tori in ∂(X ∪ N(Γ)) that are
parallel to a torus in Ω, and at most w (see Section 3 for the definition of w)
incompressible tori in ∂(X∪N(Γ)) that are parallel to a vertical or horizontal
torus in some Seifert fibered closed up component of M − Ω. Hence there
are at most NM = t+w tori in ∂(X ∪N(Γ)) that are incompressible in M .

Step 11: We prove the inequality dimZ2(H1(M
′,Z2)) ≤ nM .

Recall that M ′ is obtained from X ∪N(Γ) by adding a collection of solid
tori V1, . . . , Vr along the tori T1, . . . , Tr.

Let [β]M ′ be a non-trivial element of H1(M
′,Z2). Now for each solid

torus Vi, let Ci denote its core. Then by general position we can choose a
representative curve for [β]M ′ that is disjoint from C1 ∪ · · · ∪ Cr. Hence we
can assume that β is disjoint from V1, . . . , Vr. Now since β ⊆ X∪N(Γ) ⊆M ,
we can also consider the element [β]M ∈ H1(M,Z2).

Suppose that [β]M is trivial in H1(M,Z2). It follows that β is homologous
in X ∪ N(Γ) to a collection of curves on T1 ∪ · · · ∪ Tr which are trivial
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in M but non-trivial in M ′. Recall from the condition in Step 9 that if
Ti is compressible in M , then both generators of H1(Ti,Z2) are trivial in
H1(M

′,Z2), and if Ti is incompressible in M then at least one generator of
H1(Ti,Z2) is trivial in H1(M

′,Z2). For each Ti which is incompressible in
M , if there is a generator of H1(Ti;Z2) that is not trivial in H1(M

′,Z2) we
denote it by βi. Then every curve on Ti is either trivial in H1(M

′,Z2) or
homologous to βi in H1(M

′,Z2).
Returning now to the curve β which is homologous in M ′ to a sum of

curves on T1 ∪ · · · ∪ Tr. Since for any Ti which is compressible in M both
generators of H1(Ti,Z2) are trivial in H1(M

′,Z2), it now follows that β is
homologous in H1(M

′,Z2) to a sum of βi’s on Ti’s that are incompressible
in M . But by Step 10, there are at most NM such tori. Hence there are at
most NM such βi that are not trivial in H1(M

′,Z2). It follows that these
NM curves generate every non-trivial [β]M ′ which is trivial in M . This give
us the required inequality:

dimZ2(H1(M
′,Z2)) ≤ dimZ2(H1(M,Z2)) +NM = nM .

Hence the proposition follows. �
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