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Abstract

Given a properly embedded graph Γ in a ball B and a punctured

sphere Σ properly embedded in B − Γ we examine the conditions on

Γ that are necessary to assure that Σ is boundary parallel.
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1 Knotted Spheres

This paper explores embedding punctured spheres in balls. I would like to
thank Mike Freedman for suggesting the question and for insightful com-
ments. I would also like to thank Cameron Gordon, John Luecke, Martin
Scharlemann, and Ying-Qing Wu for helpful comments along the way.

We first must set up some definitions that greatly simplify the statements
of the theorems. Throughout the paper let B be the unit ball in R3. Let S
be the boundary of B.

Definition 1.1. A complete graph on n vertices whose vertices {v1, . . . vn}are
disjoint disks on S, and whose edges {e{i,j}, 1 ≤ i < j ≤ n}are properly em-
bedded geodesics in B with the property that if s #= t, vs ∩ vt = ∅, is a
standard unlinked n-graph.
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Definition 1.2. A complete graph on n vertices whose vertices {v1, . . . vn}are
disjoint disks on S and whose edges {e{i,j}, 1 ≤ i < j ≤ n}are properly-
embedded, disjoint unknotted arcs in B with the property that no two edges
are linked in the ball, is called a pairwise unlinked n-graph.

Definition 1.3. Given a graph Γ in B, and Σ a properly embedded n-holed
sphere in B, such that ∂Σ = ∪n

i=1∂vi and Σ ∩ e{i,j} = ∅ for all i, j. Σ is
called an enveloping n-holed sphere for Γ. B−Σ consists of two components.
The part containing {e{i,j}, 1 ≤ i < j ≤ n}is called the inside of Σ, the other
component is called the outside.

Definition 1.4. An enveloping n-holed sphere Σ is standard, if it is bound-
ary parallel, meaning there is a product structure on the outside of Σ taking
the interior of Σ to S − ∪n

i=1vi, but leaving ∂Σ fixed.

Definition 1.5. Let a core of an enveloping n-holed sphere Σ be a 1-complex,
such that the boundary of a regular neighborhood of the complex co-bounds
a product region with Σ. Let the star core be the core with exactly n edges
and one vertex of valence of n. We shall call the vertices of the star core
{ν1, . . . νn, νn+1}where νi ⊂ vi and νn+1 is the vertex of valence n. We call
the edges of the star core {ε1, . . . εn}where εi is the edge containing νi.

2 Pairwise unlinked n-graphs

2.1 The Core Lemmas

In this section we introduce a couple of basic lemmas that will increase our
insight to the theorem and will be useful in some of the cases.

Lemma 2.1. Given εi and εj , i #= j, two edges of the star core of an en-
veloping n-holed sphere for a pairwise unlinked n-graph, εi ∪ εj may never be
a knotted arc in B.

Proof. εi ∪ εj makes up the core of the cylinder that is left over if the n-holed
sphere is compressed along disks parallel to all of the uninvolved vertices.
If the core of the cylinder were knotted (see Figure 1), then by standard
satellite knot theory so is any arc running through the cylinder, but the edge
between these two vertices in our graph is unknotted and can be assumed to
be inside the cylinder, so this cannot be the case.
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Figure 1: A knotted core

Lemma 2.2. Let εi, εj, and εk be three edges of a star core of an enveloping
n-holed sphere for a pairwise unlinked n-graph. Let εki and εkj be edges obtained
from εi and εj by contracting εk and perturbing the arcs slightly so their end
points are disjoint. Then εki and εkj are not linked.

Proof. If εki and εkj were linked, then e{i,k} and e{j,k} (edges of the the original
unlinked n-graph running from vertex i to vertex k and j to k respectively)
would have to be linked.

[C] and [GF] are good places to look for an introduction to rational tan-
gles. As explained in [GF] a rational tangle T is assigned a rational number
F (T ) corresponding to a simple continued fraction. Two tangles T1, T2 are
isotopic if and only if F (T1) = F (T2). Let N(T ) be the knot obtained by from
T by connecting the ends of the tangle in the manner called the numerator
of T and D(T ) the denominator (See Figure 2).

Lemma 2.3. If T is a rational tangle with D(T ) an unknot, then F (T ) =
p, p ∈ Z. Therefore T may be undone by merely twisting two of the vertices
around each other p times leaving the other two vertices fixed.

Proof. It is well known that if F (T ) = p/q, then D(T ) produces a p/q 2-
bridge link, which is trivial if and only if q=1. Similarly, of course, N(T ) is
an unknot if and only if p = 1 so in that case F (T ) = 1/q, q ∈ Z (the picture
is just rotated ninety degrees). [M] section 9.3 and [BZ] sections 12.A and
12.B have expositions on the these facts. The classification was first done in
[S].
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Figure 2: A representation of tangle T is given on the left. The numerator
of T is demonstrated in the center, the denominator on the right.

2.2 The case, n = 3.

Theorem 2.4. Every enveloping 3-holed sphere for a pairwise unlinked 3-
graph is standard.

Proof. By Lemma 2.1 the star core is not knotted, so we may assume it
consists of one straight edge ε1 ∪ ε2 running from ν1 the north pole to ν2 at
the south pole and another edge ε3 meeting this edge at ν4 at the origin and
winding around in some manner before ending up at a ν3 somewhere on the
Southern hemi-sphere (as in Figure 3).

Act upon ε3 by an ambient isotopy leaving ε1∪ε2 fixed until ε3 lies entirely
below the equatorial disk except for at ν4 (Figure 4). Now if we examine
the two edges of the core in B′ the Southern hemi-ball (the ball we get by
cutting the original ball in half along the equatorial disk) and pull ε2 and
ε3 apart slightly so that they no longer intersect to get ε′2 and ε′3, the core’s
edges cannot be linked by Lemma 2.2 (this is the same as contracting ε1 and
looking at ε12 and ε13. This together with the fact that neither ε2 nor ε3 can
be knotted in B′ by Lemma 2.1, means that ε′2 ∪ ε′3 is just a rational tangle
in B′.

Now by Lemma 2.1 we know that the rational tangle to which they cor-
respond, must be an unknot if vertices on the equatorial disk are connected
as are the vertices on the sphere. By Lemma 2.3 we may assume that the ra-
tional tangle is obtained merely by twisting the two vertices on the southern
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Figure 3: Straightening the core

Figure 4: An isotopy acting upon the straightened core
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hemisphere around each other, and therefore that it may be untangled with-
out affecting the rest of the core (Figure 5). Therefore the core is standard,
as must be the enveloping n-holed sphere.

Figure 5: The only possible complication for n = 3.

2.3 The Case n = 4

The argument for the case n = 4 is particularly interesting, because the
methods for the previous case fall slightly shy of working, but the counterex-
ample from the case n ≥ 5 also just fails to disprove it. I would like to thank
Ying-Qing Wu for ideas that were particularly helpful in this section.

Theorem 2.5. Given n ≤ 4 every enveloping n-holed sphere for a pairwise
unlinked n-graph Γ is standard.

Proof. Assume there is a counterexample for n = 4 and examine what it must
look like. B minus the interior of the non-standard ball, bounded by the non-
standard enveloping 4-holed sphere is homeomorphic to S2×I minus an open
neighborhood of four arcs {ε1, ε2, ε3, ε4} which run from the inner sphere to
the outer sphere. Since the enveloping 4-holed sphere is non-standard, the
arcs cannot each simultaneously be isotoped in S2 × I to be pt × I.

Since the original edges of Γ were unknotted and pairwise unlinked, they
could be thought of as rational tangles. Examine the three pairs of edges of
Γ corresponding to the three possible pairings of the vertices, (e{1,2}, e{3,4}),
(e{1,3}, e{2,4}), (e{1,4}, e{2,3}). Pick one pair, say (e{1,2}, e{3,4}). Because the
pair is a rational tangle, there is a disk D1 in B that separates the edges.
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Assume D1 intersects Σ minimally. An innermost curve of intersection on
D1 yields a subdisk D′

1 which compresses Σ into two annuli A{1,2} and A{3,4}

which are just the boundary of a regular neighborhood of e{1,2} and e{3,4}

respectively. The same arguments can be made for the other two pairs.
Thus, there are three disks that can be added to S2 × 0 that separate the
end points of the εi into pairs, each yielding a rational tangle.

If we take the branched double cover of S2×I over the four arcs ε1, ε2, ε3, ε4,
we get a manifold M with boundary two tori T0, T1 because the branched
double cover of a sphere over four points is a torus. Since adding D′

1 to B
minus the “inside” of Σ, thought of as S2 × I minus a neighborhood of the
four branching arcs yields the exterior of a rational tangle, and the branched
double cover of a ball over a rational tangle is, of course, just a solid torus.
Thus, D′

1 lifts to a disk that gives a filling of T0 that turns M into a solid
torus, so M is just a solid torus minus a knot. Note that the three pairings
of the vertices gives three different fillings of T0 each of which yields a solid
torus.

Theorem 2.6. [B Corollary 2.9] If k is a nontrivial knot in D2 ×S1 such
that k is not parallel into ∂D2×S1 and there exists more than one nontrivial
surgery on k yielding D2 × S1, then k is equivalent either to W 1

3 W−3
7 or its

mirror image W−1
3 W 3

7 .

W−1
3 W 3

7 is the (−2, 3, 7) pretzel knot embedded as shown in Figure 8.
We refer to the this as the Berge knot. Since the arcs were not standard,
we must lift to the Berge knot or a knot k parallel into T1, the boundary of
D2 × S1.

Proposition 2.7. If k is parallel into the boundary of D2 × S1 then k fails
to produce a counter example to Theorem 2.5.

The proof of the proposition requires two steps. First we prove that k can
be assumed to have the standard embedding in D2 × S1 by showing there is
a unique strong inversion on k. Second we prove that the punctured sphere
produced by quotienting out by the Z2 symmetry is either boundary parallel
or else violates Lemma 2.1 and therefore is not a counterexample.

Proof. To prove that k must be embedded in the standard manner we ex-
amine an annulus A that runs from T0, the torus boundary component cor-
responding to k in the exterior of k, to T1, the boundary of the solid torus.
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A can be assumed to be embedded (see [CF]). Let F be the involution of
D2 × S1. Let F (A) = A′.

Lemma 2.8. There is a unique strong inversion of k, a torus knot parallel
to the boundary of a solid torus.

Proof. Our first goal is to show that A can be chosen such that A = A′.
We choose A to have a minimal number of intersections with A′. It is clear
that ∂A can be assumed to be fixed by F , so perturbing A slightly we can
assume that ∂A ∩ ∂A′ = ∅. Now A ∩ A′ must consist of simple closed
curves. An innermost disk argument suffices to show that each of the simple
closed curves is essential on A and A′, so the intersection consists of disjoint
simple closed curves c1, c2, . . . cn parallel to ∂A on A. Let c1 be the curve of
intersection closest to the boundary component of A on T1, c2 be the second,
and so on increasing the index as the curves move towards the boundary
component on T0. Likewise on A′ the intersection consists of parallel essential
circles c′1, c

′
2, . . . c

′
n labeled in the same manner. Let Ai be the sub-annulus

of A running from the boundary component on T1 to ci, and A′
i be the sub-

annulus of A′ running from the boundary component on T1 to c′i. Let cj be
the curve of intersection on A that corresponds to the intersection with A′

at c′1. If we cut and paste A replacing Aj by a push off of A′
1 we reduce the

number of intersections of A and A′ by at least one. In order to preserve
the property that F (A) = A′ we must also replace A′

j by a push off of A1.
This, however, cannot increase the number of intersections, so we have a new
annulus running from T1 to T0 that has fewer intersections with its image
under F , contradicting minimality. Thus, we can assume that A ∩ A′ = ∅.

This, however, implies that restricting to the solid torus between A and
A′, F takes A×I to itself, exchanging A×0 with A×1. This in turn implies
that there must be an annulus in A × I that is fixed by F .

Now that we know that A is fixed, we use it to show that we have a
standard inversion of k. Let D be a meridional disk for T1 that is fixed by F .
Examine D∩A. In general the intersection pattern on D will look something
like Figure 6 with a collection of arcs running from T0 (which punctures D
several times) to T1 and a collection that run from one of the punctures from
T0 to another. We can remove the arcs running from T0 to T0 by picking
an outermost arc on A that runs from one component of ∂A to itself. This
small disk gives an isotopy of A together with k that reduces the number of
intersections of A with D. because F (A) = A we can simultaneously do a
second isotopy of A that also reduces the number of intersections of A with

8



D and preserves the symmetry of k. Thus, we can assume that D∩A consists
solely of arcs running from k to T1. This, however, shows that we have the
standard symmetry for k because cutting the solid torus along D turns it
into a cylinder and A becomes bands running from the top of the cylinder
to the bottom in the unique way possible.

Figure 6: D ∩ A. D is pictured punctured nine times by T0 on the left and
A is pictured on the right.

Now we need only argue that torus knots with standard embeddings fail
to give a counterexample. Let k be a torus knot embedded in D2 ×S1, fixed
by an involution F of D2 × S1. Let A be the fixed annulus above. Let M
be S2 × I with four branching arcs ε1, . . . ε4, the quotient of the exterior of
k in D2 × S1 by F . In the quotient, T0 maps down to S2 × 0 which we will
designate S0 and T1 maps to S2 × 1 designated S1.

Lemma 2.9. Either S0∪ε1∪ε2∪ε3∪ε4 violates Lemma 2.1 or it is standard
and therefore in either case is not a counterexample to Theorem 2.5.

Proof. Because ε1, . . . ε4, each run from S0 to S1 the two arcs a1, a2 that are
fixed in D2×S1 by F must each intersect k in exactly one point. In the knot
exterior a1 and a2 are then broken each into two arcs with one end point of
each arc on T1 and one end point on T0. In M the ai then become the four
branching arcs ε1 . . . ε4.

Under the quotient, the annulus A becomes a rectangular disk D which
without loss of generality runs down ε3 along S0 up ε4 and back along S1 and
is disjoint from ε1 and ε2. This is clear because A∩ (a1 ∪ a2) consisted of the
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preimage of ε3 and ε4 but was disjoint from the preimage of ε1 and ε2 (recall
that A, like the ai is fixed by F and runs from T0 to T1). This means that
M looks exactly like Figure 7, where ε1 and ε2 form a rational tangle inside
the ball designated T .

S
0

S
1

D T
3 1

24

Figure 7: The branching arcs of M consist of two standard arcs ε3 and ε4
and a rational tangle running from S0 to S1 designated T consisting of arcs
ε1 and ε2.

By Lemma 2.3 we see that ε1 ∪ ε2 must be the tangle T that results from
two horizontal arcs whose eastern vertices are twisted n times around each
other or ε1∪S0∪ε2 will be knotted violating Lemma 2.1. On the other hand,
if ε1 ∪ ε2 is the tangle T above, then twisting the eastern portion of M , n
times shows M is homeomorphic to the standard picture and therefore again
fails to be a counterexample.

Note: One can in fact prove that (if k is a torus knot other than the
unknot) k never produces a standard enveloping sphere, but instead always
creates one that violates Lemma 2.1.

Lemma 2.9 completes the proof that k cannot be parallel to T1 and there-
fore must be a Berge knot if it is to produce a counterexample.
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We may transform the traditional picture of the Berge Knot to a sym-
metric one as in Figure 8. Snappea [W] tells us that this knot (entered as a
link) has exactly one Z2 symmetry, which we can now see.

Figure 8: The Berge knot in D2 × I and an embedding after an isotopy in
D2 × I that reflects the knots Z2 symmetry (D2 × I is not drawn, but is the
obvious choice for the initial braid).

We quotient out by the symmetry to either get a counterexample, or proof
that there is none. We get S2 × I minus four arcs ε1, ε2, ε3, ε4. We will show
that three of the arcs violate Lemma 2.2 (See Figure 9).

Label the edge omitted from the picture ε4. Label the horizontal edge
that has one of its vertices on the eastern side of the sphere ε3. Contraction
of ε3 takes edges ε1 and ε2 to ε31 and ε32 as pictured in Figure 10.

To see that ε31 and ε32 are in fact linked we call on the following well known
facts about rational tangles. (See, for example, [M] Theorem 9.3.1.)

Theorem 2.10. 1. A 2-bridge knot (or link) is the denominator of some
rational tangle

2. Conversely, the denominator of a rational tangle is a 2-bridge knot (or
link).

Corollary 2.11. If k is the denominator of a rational tangle, then k is
prime.

The denominator of the tangle in Figure 10 is the connect sum of a trefoil
and a figure eight knot and therefore it is not a rational tangle by Corol-
lary 2.11. Since neither of the arcs is knotted, they must be linked violating
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Figure 9: The dark edge is the interior sphere in S2 × I obtained from
quotienting out by the Z2 symmetry of the Berge knot in D2 × I. The light
edges are the four singular arcs {a1, a2, a3, a4}. After dropping one of the ai

and an isotopy, the three other edges appear to be linked.
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Lemma 2.2. Since this was the only possible counterexample, Theorem 2.5
must be true.

Figure 10: The edges violate Lemma 2.2.

2.4 The Case n ≥ 5

Theorem 2.12. There exist pairwise unlinked n-graphs with non-standard
enveloping n-holed spheres for all n, n ≥ 5.

Proof. Figure 11 shows a θn curve in a ball. Such a graph is well known
not to be standard, but every subgraph is standard. Let a θn curve be the
star core of an enveloping n-holed sphere. Although it is not standard, it
supports a pairwise unlinked n-graph Γ. If we think of the enveloping sphere
as bounding a central (round) ball with n tentacles running to the boundary,
we can picture the pairwise unlinked graph as being a standard unlinked
graph in the central ball which is extended by a product down each of the
tentacles. Now since n ≥ 5 any two edges of Γ miss at least one vertex, but
there is an isotopy of any n−1 arcs of a θn curve that makes those arcs appear
standard. Likewise since the edges of Γ completely miss one of the tentacles,
they may be pictured as being embedded in a ball bounded by a standard
enveloping (n−1)-holed sphere. The arcs remain standard within the central
ball and are extended by a product down the tentacles throughout the entire
process, so clearly the edges are not linked pairwise. (See Figure 11).

13



Figure 11: The θn (n = 5 here) curve is a non-standard core but supports a
pairwise unlinked graph for n ≥ 5

3 Standard unlinked n-graphs

Theorem 3.1. Given a standard unlinked n-graph Γ, every enveloping n-
punctured sphere Σ is standard.

Note: Since the edges of our graph are geodesics in this case, Morse
theory assures us that we can assume that there is an embedded disk D in
B whose interior is disjoint from all of the edges of Γ and whose boundary
consists of two arcs α and β, where α is one of the edges of the graph, β is
strictly contained in ∂B, ∂α = ∂β and the interior of β is disjoint from all
of the edges of Γ.

Let’s examine how D meets Σ.

Claim 3.2. We may assume that D ∩ Σ contains no simple closed curves.

Proof. Assume D is chosen with a minimal number of intersections with
Σ. Examine an innermost curve δ on D. If δ is not essential on Σ, then
there is an obvious isotopy through which this intersection could have been
eliminated, so we may assume it is essential on Σ.

Therefore the innermost loop gives us a compressing disk for Σ. Homology
is enough to assure us that the disk must be on the inside of Σ (the component
of B−Σ containing {e{i,j}, 1 ≤ i < j ≤ n}). Since δ is assumed to be essential
in Σ, it must separate the vertices of Σ into two non-empty sets. With no loss
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of generality, let v1 be in one set and v2 be in the other. Since δ separates the
vertices (as in Figure 12), the disk it bounds does too, and e12 must intersect
it. This, however, is a contradiction since the interior of D is disjoint from
the edges of Γ.

Figure 12: An essential arc and curve separate the remaining vertices into
two sets.

Now we examine an outermost arc γ on D. If γ runs from one vertex of
Σ to a different one, then it is obvious that the corresponding subdisk of D
is on the outside of Σ. This gives us a compression disk that allows us to
complete the proof by induction. (See Figure 13).

We may therefore assume that γ connects a vertex, say vn to itself. Be-
cause D ∩ Σ is assumed to be minimal γ must be essential on Σ. If the
disk γ cuts off on D is on the inside of Σ, then once again it must separate
{v1, . . . vn−1} into two sets and the argument proceeds as in the simple closed
curve case. (See Figure 12).

Our final case therefore is that although γ connects vn to itself, the disk
is on the outside of Σ. Compressing along this disk splits the n-punctured
sphere Σ into two pieces Σ1 and Σ2. Σ1 is an r-punctured sphere and Σ2

is a n + 1 − r-punctured sphere, where 2 ≤ r ≤ n − 1. By induction we
may therefore assume that Σ1 and Σ2 are standard. Σ1 and Σ2 and their

15



Figure 13: A boundary-compressing disk on the outside between two vertices
reduces n to n − 1

product structures are in different “halves” of B. They are separated by
the annulus formed by the boundary compressing vn. The inverse of the
boundary compression is a tunnel connecting the two boundary components
of the annulus. Up to isotopy there is a unique arc running across the annulus,
so there is a unique tunnel we can add to attain Σ from Σ1 and Σ2. Since
the product structures on Σ1 and Σ2 are to the outside of the annulus, and
the tunnel can be added extremely close to the boundary, it is clear that
the product structure can be extended across the tunnel to give a product
structure on Σ, proving that it is standard.

Note: we needed the full strength of the complete graph here. Figure 14
shows a counter-example for n = 3, if one edge is missing from Γ. This
counter-example may be generalized for any n to give a counterexample for
the complete graph on n vertices, minus one edge.

4 The Infinite Case

Definition 4.1. f : F → Σ ⊂ R3 is a proper embedding of F , a sphere with
a Cantor Set worth of punctures, in R3 if the pre-image of every compact set
in R3 is a compact set in F (H3 could replace R3 throughout this section).
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Figure 14: A non-standard sphere for the complete graph on three vertices
minus one edge.
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Definition 4.2. Let ∪lα be a collection of geodesics in R3. Let ∪lα be con-
tained in one connected component of R3 − Σ. Again let the inside of Σ
be the component of R3 − Σ containing Γ and the outside be the remaining
component.

Definition 4.3. Σ is said to be standard if there exists a product structure
on the outside of Σ such that it is a product of the punctured sphere and a
half open interval.

We may now ask, how many lines contained inside of Σ it takes to ensure
that the embedding of Σ is standard.

Theorem 4.4. Given Σ, a proper embedding of F , a sphere with a Cantor
Set worth of punctures in R3 and a set of geodesics which are dense in the
Cantor Set, we may conclude that the punctured sphere is standard.

In this context saying that the geodesics are dense in the Cantor Set means
that given any two punctures p1 and p2 of F and any two neighborhoods of
those punctures µ1 and µ2 on F , there exists a geodesic that runs from the
image of some puncture in µ1 to the image of some puncture in µ2.

Note that though there are an uncountable number of points in the cantor
set, we are only requiring a countable set of geodesics. Even if we wanted to
satisfy the property of being dense for every point on the sphere, we would
still only need a countable set of geodesics, since geodesics connecting all the
points on the sphere with rational coordinates would suffice and the set of
possible pairings of a countable set is itself a countable set.

Perhaps the easiest way to picture the scenario is to imagine the universal
cover of a genus-two handlebody in hyperbolic three-space. The punctured
sphere would be the boundary of this cover and the lines would be geodesics
connecting points at infinity.

It is worthy of note that in the finite case we needed the complete graph, so
we needed all possible geodesics, but in the infinite case with an uncountable
number of punctures, we only need a countable number of edges.

We now begin the proof of the theorem.

Proof. Choose a point on Σ to be the origin of R3.

18



Let Sn be the sphere of radius n centered at the origin in R3, and let Bn

be the ball that it bounds. We may alter Σ slightly if necessary so that we
may assume that it intersects each Si transversally.

Fix i and examine Bi. The pieces of Σ in Bi may be broken into two
sets. The first set consists of the connected piece containing the origin Σi1,
and the second set, all the other pieces, {Σi2, . . . Σin}. We shall isotope Σ
until Bi contains one piece of the first type and none of the second on the
“outside” of Σ in Bi. The latter does not prevent us from claiming that the
former is boundary parallel in Bi − Σ, so we do not worry about them. See
Figure 15

Figure 15: A small ball can be cleaned up leaving a product structure on the
outside of the punctured sphere.

We examine the pre-images of the Σij in F . We now make an argument
to show that we may assume that none of them have a boundary curve which
is trivial in the fundamental group of F .

If there were a trivial boundary curve, we could choose an innermost one
(on F ). This would bound an embedded disk D on Σ that meets Si in a
simple closed curve. The boundary curve splits Si into two disks, each of
which bounds a ball with D. If D is on the interior of Bi, then we choose
the ball that does not contain the surface Σi1 (Σi1, is connected and disjoint
from D, so it can only be in one of the two balls). If D is on the exterior of
Bi then we choose the smaller of the two balls (it is contained in the other
ball). Either way we push D across the ball and through Si, eliminating at
least its intersection with Si and possibly more extraneous intersections that
were contained in the ball through which our isotopy was done.
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Note that Σi1 is unchanged away from its boundary and its boundary can
only be changed by capping off trivial components. We continue this process
until there are no more trivial components in the entire collection of Σij.

At the risk of sloppy notation we shall continue throughout to call the
new surfaces Σij carefully noting at each step that we still have done only a
finite number of isotopies to a finite number of pieces.

We now notice that Σi1 fits all of the criterion of the standard finite
case. Since the geodesics are dense within the Cantor Set, at any finite stage
there will be a complete graph in Bi on the vertices that are given by the
intersection of Σi1 and Si. Thus, by the previously proven finite case, Σi1 is
standard in Bi. We can use its inherited product structure to isotope Σ to
make sure that it does not intersect Bi on the outside of Σi1.

Now we repeat the process for some k > i. We might worry that this
process results in our pushing some piece of Σ an infinite number of times,
but this is not the case, as every point in Σ is in some Σk1 for large enough k
and our isotopies never affect points of Σk1 that are not near the boundary of
Bk. Thus, for each point there is some k such that the point is left alone for
good after k steps. Since each step involved only a finite number of isotopies,
each point is moved only a finite number of times.

The only thing left for us to check is that the product structure for Σk1 can
be chosen to correspond exactly with the product structure we already chose
for Σi1. Bi may be left fixed as we do our operations for Σk1, so naturally
Σi1 remains fixed, too.

Since Σi1 is boundary parallel in Bi, we may substitute part of Si for it
in Σk1 and the resulting surface still contains a complete graph on one side
and must be boundary parallel. If we concatenate its product lines in Bk

with the product lines of Σi1 in Bi we see a product structure that suits our
desires as in Figure 16.
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Figure 16: The product extends from one stage to the next
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