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Limits of incompressible surfaces
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Abstract

One can embed arbitrarily many disjoint, non-parallel, non-boundary parallel, incompressible
surfaces in any three manifold with at least one boundary component of genus two or greater
(Howards, 1998). This paper proves the contrasting, but not contradictory result that although one
can sometimes embed arbitrarily many surfaces in a 3-manifold it is impossible to ever embed an
infinite number of such surfaces in any compact, orientable 3-manifold M .  1999 Published by
Elsevier Science B.V. All rights reserved.
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1. Introduction and definitions

We begin by reviewing a few definitions which can be found in most introductory texts
on 3-manifolds. We rely heavily on Hempel’s versions in [1].
A surface (F, ∂F) that is embedded in a 3-manifold (M, ∂M) is properly embedded if

F ∩ ∂M = ∂F . From this point on when we refer to a surface in a three-manifold, we
will be talking about properly embedded surfaces unless otherwise noted. Two surfaces F1
and F2 in a 3-manifold M are parallel if they co-bound a product (F × I ; F × 0 = F1,
F ×1= F2) inM and ∂F × I ⊂ ∂M . A surface F1 in a 3-manifoldM is boundary parallel
if it co-bounds a product with F2, a subsurface of the boundary (F × I ; F × 0 = F1,
F × 1 = F2) and ∂F × I ⊂ ∂M in M . A surface F embedded in a three-manifold M is
called compressible if any of the following apply.
(1) F is a 2-sphere which bounds a ball inM ,
(2) F is a disk and either F ⊂ ∂M or there is a ball B ⊂ M such that ∂B = F ∪ D

where D is a disk contained in ∂M , or
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(3) there is a disk D ⊂ M with D ∩ F = ∂D and ∂D not contractible in F . (Note that
D, of course, is not required to be properly embedded inM .)

Otherwise, F is incompressible.
A surface F is boundary compressible in a three-manifoldM if either
(1) F is parallel to a disk in the boundary ofM or
(2) there exists a disk D in M such that D ∩ F = α, an arc in ∂D, and D ∩ ∂M = β

is an arc in ∂D with α ∩ β = ∂α = ∂β and α ∪ β = ∂D, and either α (β) does not
separate F (∂M − ∂F ) or α separates F (∂M − ∂F ) into two components and the
closure of neither is a disk.
Otherwise, F is boundary incompressible.
A 3-manifold,M is irreducible if every embedded 2-sphere inM bounds a 3-ball.

We end with an algebraic definition. Let G = G1 ∗H G2 designate the free product with
amalgamation of the groupsG1 and G2 over the group H .

2. The free product with amalgamation

Howards [4] demonstrates that the free group on two generators may be split into a free
product with amalgamation over two arbitrarily large free groups. This section proves the
following contrasting result (it is probably known but does not seem to have ever been
written down):

Theorem 2.1. Let G1 be a group that is not finitely generated and let H be finitely
generated, then G = G1 ∗H G2 is not finitely generated.

Proof. Let Mi be a K(π,1) for Gi (i = 0 or 1). Let Si be the image of S a complex that
maps in to represent H in each Mi . Connect S0 to S1 with a cylinder A = S × I with
S × 0 = S0 and S × 1 = S1 yielding a new space, M . This gives us the free product with
amalgamation for which we are searching.
Choose a base point on S′ = S × 1/2 for π1(M). If π1(M) is finitely generated,

then choose a set of generators, {α1,α2, . . . ,αi−1,αi , . . . ,αn}, where {α1,α2, . . . ,αi−1}
generate H . Choose generators for π1(M1) {γ1, . . . ,γi−1,γi , . . .} and generators π1(M2),
{β1, . . . ,βi−1,βi , . . .} where {γ1, . . . ,γi−1} (and {β1, . . . ,βi−1}) are {α1,α2, . . . ,αi−1}
pushed off intoM1 (andM2, respectively).
Now, {αi , . . . ,αn} may weave back and forth between M1 and M2 a finite number of

times and may be expressed as
{
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where each γsm , i ! s ! n, (or βsm ) is either some γi or e (or some βi or e). Examine any
γl in π1(M1). It must be in the span of {γ1, . . . ,γi−1,γi1, . . . ,γnk }.
To see this, take a disk D bounded by γl followed by γ −1

l expressed as a product of the
generators of π1(M) that intersects S′ transversally and minimally. Since the fundamental
group of S′ injects, we can assumeD∩S′ has no simple closed curves. Examine the portion
ofD − D ∩ S′ that contains γl . This must be a disk whose boundary consists of generators
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of π1(M1) and curves on S′ that hence may be expressed as products of {γ1, . . . ,γi−1}
and their inverses. Therefore, γl may be written in terms of {γ1, . . . ,γi−1,γi1, . . . ,γnk } and
their inverses. Thus, π1(M1) must be finitely generated. !

Corollary 2.2. Given a compact orientable 3-manifoldM and a set of surfaces {Fi} inM ,
each of the regions in M − ⋃{Fi} has finitely generated fundamental group.

Proof. After splitting M along a finite number of the surfaces we attain M ′ a compact
3-manifold with finitely generated fundamental group for which each of the remaining
{Fi} is separating. None of the complementary regions could have infinitely generated
fundamental group or elseM ′ would have to, also. !

Lemma 2.3. The boundary of a 3-manifold M with finitely generated π1(M) must have
bounded genus.

Proof. Take a Scott core C for M and expand C to remain a compact submanifold of M ,
but to include an arbitrarily large portion of the boundary (for example, one might take the
C′ equal to C plus the closure of a neighborhood of B ∪ A where B is a (topologically)
large portion of the boundary andA consists of arcs running fromB toC). C′ can be further
expanded to become a Scott core C′′ by adding 2-handles that kill any added elements of
π1. Now since C′′ has the same fundamental group as M and H1 is just abelianized π1,
H1(C′′) must have no more generators than π1(M), but the boundary of C′′ has arbitrarily
high genus (∂(M) ∩ C′′ = ∂(M) ∩ C′) and since C′′ is compact, “half lives–half dies”
assures us that H1(C′′) has arbitrarily many generators, which is a contradiction. !

Note. This proof actually shows that any compact submanifold of M is contained in a
Scott core. We should also point out that one can also use a more complicated homology
argument to prove the lemma.

3. The behavior of incompressible surfaces in a 3-manifold

For a while it was claimed that one could never embed arbitrarily many disjoint, non-
parallel, non-boundary parallel, incompressible surfaces in a three-manifold. The first
counter example was found in [5]. More recently a more general argument has been used
to show that any manifold with at least one boundary component of at least genus two
allows such embeddings [4]. On the other hand, Benedict and Mike Freedman showed that
in any manifold, if the Euler Characteristic of the surfaces is bounded, then the number of
surfaces will also be bounded [3]. The result in [4] contrasts with, but does not contradict
the main theorem of this paper.

Theorem 3.1. No compact, orientable three manifold can support an infinite number of
disjoint, non-parallel, non-boundary-parallel, incompressible surfaces.



120 H.N. Howards / Topology and its Applications 99 (1999) 117–122

Fig. 1. Product and non-product regions.

Note. An easy argument in [3] shows that any given three manifold supports only a
bounded number of boundary-parallel, but non-parallel surfaces, if it is assumed that none
of the surfaces are disks or annuli. Thus, this assumption could replace the non-boundary
parallel assumption above.

Proof. To begin our proof, we should recall that the usual Haken finiteness argument using
normal surfaces shows that there can only be a finite number of incompressible, boundary-
incompressible surfaces, so we need only consider the surfaces that are incompressible but
boundary compressible.
Given this, in order to derive a contradiction we may assume that we have an infinite list

of surfaces {Fi}. It will be convenient later to assume we have no annuli, and [3] assures
us thatM can only have a finite number of possible disjoint non-boundary-parallel annuli,
therefore that we may assume that none of the surfaces on the infinite list of {Fi} are annuli.
Note that M only has a finite number of boundary components. Also note that since each
Fi is boundary compressible, each one meets at least one boundary component of M in a
set of simple closed curves. We will choose one of the surfaces and examine its boundary
compression disk.
We examine how the {Fi} intersect the boundary of M and define a product region in

∂M to be an annular region with boundary two parallel curves from the boundary of the
{Fi}. Of course a non-product region simply refers to a region of the boundary which is
not a product region. See Fig. 1. !

Lemma 3.2. The boundary components of the surfaces Fi are each parallel to one of a
finite number of curves on the boundary of M .

Proof. SinceM has a finite number of boundary components and all of the Fi are disjoint
and therefore have disjoint boundary components, the proof is an easy application of
hierarchy arguments to nontrivial simple closed curves on closed orientable surfaces. !
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Since there are only a finite number of curve types on the boundary there can only be a
finite number of non-product regions. These in kind can only correspond to {M1, . . . ,Mn},
a finite subset of the regions obtained by cuttingM up along the union of the {Fi}.
LetM ′

i be a closed regular neighborhood inMi of the boundary ofMi . This means that
M ′

i is a (not necessarily connected) surface crossed with the unit interval and therefore has
incompressible boundary.
Now inM replaceMi byM ′

i obtainingM ′. Since we have just observed that the {Mi} is a
finite set of pieces and the pieces that do not have non-product regions on their boundary are
left alone and not replaced, we have only altered a finite number of regions. Corollary 2.2
together with Lemma 2.3 assures us that for any region Mi , ∂Mi has bounded genus.
We also note that if the boundary of a 3-manifold has a “puncture”, the puncture has to
extend to infinity, so a neighborhood of the puncture must be an infinitely long annulus.
Since the boundary of Mi is made from a (potentially infinite) list of compact surfaces,
such a puncture could only result from an infinite list of annuli glued together, but this is
impossible since none of the {Fi} are annuli.M was compact, and each of the new pieces
are compact, thereforeM ′ is, too.
The infinite collection of disjoint, non-parallel, non-boundary-parallel, incompressible

surfaces in M become an infinite collection of disjoint, non-parallel, non-boundary-
parallel, incompressible surfaces in M ′. The remainder of the paper will show that the
surfaces are also boundary-incompressible in M ′ which is a contradiction.
We now choose an Fi and examine a disk representing its boundary compression.

Choose the outermost such boundary compression disk with respect to Fi , so that the
interior of the disk is disjoint from Fi . We look at the intersection of the disk with the other
surfaces. Since the surfaces are incompressible, we may use an innermost loop argument to
show that we can choose to have only arcs and no simple closed curves in the intersection.

Lemma 3.3. The boundary of boundary compressing disks runs through a non-product
region.

Proof. If the component were strictly in product regions, either the component would
connect a boundary component to itself in a trivial manner which is prohibited by the
definition of a boundary compression, or it would cross the annulus in the unique arc
connecting the two boundary components. (See Fig. 2.)
In the latter case, after compressing we have a boundary component which is trivial

in the fundamental group of ∂M . So now we have two options: either we have a disk,
which is impossible since that would mean we started with an annulus, or else we have a
compressible surface. This is also a contradiction as performing a boundary compression
cannot make a surface compressible that was not already compressible.
The boundary compressing disk must therefore intersect a non-product region essen-

tially. This yields a compressing disk for a boundary component of one of the M ′
i (since

those are the only pieces which can have a non-product region on its boundary), but these
pieces have incompressible boundary, so this is a contradiction. There is no boundary com-
pressing disk and therefore the surfaces must be boundary incompressible in M ′.



122 H.N. Howards / Topology and its Applications 99 (1999) 117–122

Fig. 2. A boundary compression in a product region.

Haken finiteness now applies, so there are only a finite number of surfaces. This
contradicts our original assumption. !
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