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Abstract

Knot mosaics are used to model physical quantum states. The mosaic number of a knot is the
smallest integer m such that the knot can be represented as a knot m-mosaic. In this paper
we establish an upper bound for the crossing number of a knot in terms of the mosaic number.
Given an m-mosaic and any knot K that is represented on the mosaic, its crossing number c is
bounded above by (m − 2)2 − 2 if m is odd, and by (m − 2)2 − (m − 3) if m is even. In the
process we develop a useful new tool called the dual of the mosaic.

1 Introduction

In [7], Lomonaco and Kauffman introduce a standard system of knot mosaics as a model of
physical quantum states. In this paper we introduce a new tool for analyzing mosaics, a dual
to the mosaic, denoted D, together with T an ordered triple associated to D. Mosaics contain
5 distinct tiles, up to rotation, and all 11 orientations are shown below. We label the tiles with
roman numerals for the 5 types and when applicable the letters a though d for the distinct
rotations of those types. We also introduce a type 0 tile which consists of a square with a dot
in the center. Type 0 tiles are not a part of a mosaic, and have not previously been used in the
literature but will be used when we define the dual.

0 I IIa IIb IIc IId

IIIa IIIb IVa IVb Va Vb

For a positive integer n, define an n-mosaic Mn as an n × n matrix composed of mosaic
tiles. When specifying a given tile, we model subscripts after the entries in a matrix so the tile
Ri,j will refer to the tile in the ith row and jth column, where columns are counted from the
left and rows are counted from the bottom (we diverge from matrix notation slightly here to
allow row numbers to reflect a height function). If we think of Mn as a square disk, the 4n− 4
tiles that intersect ∂Mn will be called boundary tiles and the other (n−2)2 tiles will be referred
to as the interior of the mosaic and denoted S. See Figure 2.3 for a depiction of S and the
boundary tiles in a mosaic. We will often be focused on S.

A link n-mosaic is an n-mosaic with all of its tiles suitably connected so that after all the
tiles are placed on the mosaic, the result is a projection of a link. In such a mosaic, tiles of types
II, III, IV, and V must have adjacent tiles that are also of one of these four types to extend the
arcs started on those tiles.
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A knot n-mosaic is a link n-mosaic that corresponds to a projection of a one component link
(a knot). Thus every knot mosaic is a link mosaic, but not every link mosaic is a knot mosaic.
Define the mosaic number of a knot (or link) to be the smallest natural number m such that
the knot (link) is representable as a knot (link) m-mosaic.

An important motivation for studying knot mosaics is the Lomonaco-Kauffman Conjecture,
which states that knot mosaic theory is equivalent to classic (tame) knot theory. This was
proven by Kuriya in [5], so as a result, we can treat knot equivalence and crossing number of
knot mosaics in the usual way.

We introduce the concept of a dual for a mosaic in this paper. Given a mosaic Mn for link L
(or knot K), we define the dual on S, the inner tiles of Mn. The dual D is obtained by replacing
the tiles on S in the following manner: every type V is replaced with a type I, type IV with type
0, type IIIa with type IIIb, type IIIb with type IIIa, type IIa with type IIc, type IIc with type
IIa, type IIb with type IId, type IId with type IIb, and finally type I with type IV (although
this means the dual is not uniquely defined, either type IVa or IVb is fine). Intuitively, the dual
is like a complement of the link in the mosaic in the sense that the union of the dual and the
mosaic will intersect the boundary of each tile in S exactly four times - once on each of the
tile’s edges. Most importantly, although the definition of the dual is not quite unique, there is
an inverse function associated to it that is unique (reverse the orders in the definition above),
so the portion of the mosaic contained in S may be deduced from D.

The dual consists of loops, type 0 tiles, and arcs with both endpoints on ∂S that we will call
edges. The term arc will be used to refer to a subset of a loop or an edge. The constant |D| is
defined to be the total number of tiles in D (excluding the blank type I tiles, of course). The
tile Ti,j refers to the dual tile in the ith row and jth column. Throughout the paper Ri,j

refers to the knot and Ti,j refers to the dual. Although Ti,j is defined by looking at Ri,j ,
we will be focused on the dual in most of our arguments so we will almost always refer directly
to Ti,j .

We next define an ordered triple T , which is computed from the dual of a given mosaic.
Let D′ be the complement in D of all the type 0 tiles in D. Let D′′ be the set of all tiles Ti,j

in D that are of type IV. Let l = |D|, l′ = |D′| and l′′ = |D′′|. We define the ordered triple
T = (l, l′, l′′). Notice that although the dual is not unique for a given mosaic, the only choices
were which of the two type IV tiles to pick and so any choice of dual for this mosaic will give
the same ordered triple T .

Of all possible ways to embed a specific knot K on an n × n mosaic, let Mn be a mosaic
that minimizes the ordered triple T lexicographically (alphabetically). For example if K can be
built with with a dual yielding T1 = (7, 4, 2) or with a dual yielding T2 = (8, 0, 0) we pick the
first embedding since T1 < T2 lexicographically. We say in such a case that T is minimal.

Note that D′ consists of a set of loops and properly embedded edges on a square disk S.
Another way to think of D′ is this: all type 0 tiles in the dual correspond to smoothing one
crossing from a mosaic that contained one more crossing. Then D′ is just the dual of the knot
or link mosaic which has none of these crossings smoothed.

We begin by introducing a theorem (Theorem 3.1 in [3]) which is the natural starting place
for a discussion of the relation between crossing number and mosaic number.

Theorem 1.1 (Upper Bound on Crossing Number). [3] Given an m-mosaic, if a knot is rep-
resentable on the mosaic then its crossing number is bounded above by: c ≤ (m− 2)2

Using this bound, one can quickly show the mosaic numbers for many knots. However, it is
clear that this bound is of limited use when it comes to determining the mosaic number of more
complex knots. In this paper, we sharpen the upper bound on crossing number by proving

Theorem 7.2. Given an m-mosaic and any knot K that is projected onto the mosaic, the
crossing number c of K is bounded above by the following:

c ≤

{
(m− 2)2 − 2 if m = 2k + 1

(m− 2)2 − (m− 3) if m = 2k.
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Figure 1.1: Pictured above are two 4 × 4 mosaics, but only the one on the right is suitably connected to yield the
projection of a knot.

2 Saturation and duals

A mosaic is said to be saturated if every tile of S, the interior of the mosaic, is a crossing tile.
In this case D = ∅. Conversely, if a link mosaic has a nonempty dual, it is not saturated.
Theorem 7.2 stated above shows that the even and odd knot mosaic boards have radically
different properties regarding how “nearly saturated” they can be.

Lemma 2.1. In a link mosaic, boundary tiles cannot be crossing tiles. Therefore all crossings
of a link must fit on S, the interior of the mosaic.

Proof. For all tiles to be suitably connected, every edge containing a strand must be adjacent
to another edge containing a strand, and for crossing tiles on the boundary, this is not the case
(for example, see Fig. 1.1). Therefore boundary tiles cannot be crossing tiles.

Theorem 2.2. A saturated mosaic cannot contain the projection of a knot that achieves its
crossing number.

Proof. Start by filling S with type V tiles. The proof will not depend on if we choose type
Va or Vb so at this stage we have not lost generality of the argument no matter which type V
tiles we choose. Now we notice that since edges intersecting ∂S can only connect to one of its
two adjacent edges in ∂S there are only two choices of how to connect up the strands through
the boundary tiles to get a knot or link. The vertical strand in R2,3, for example, must either
connect to the vertical strand in R2,2 as it does in Figure 2.6 or R2,4 as in Figure 2.5. In the
first case this means tile R1,3 is a type IId and R1,2 is type IIc and in the second case tile R1,3

is a type IIc and R1,4 is a type IId, again both matching the examples in Figures 2.6 and 2.5
respectively. On a saturated board once this single choice has been made the rest of the choices
on the outside are uniquely determined.

Suppose K is a knot such that its mosaic representation on Mn is saturated. If the mo-
saic (shown in Fig. 2.5) contains any crossings easily removed by a type I Reidemeister move
(nugatory crossings), the number of crossings in the mosaic exceeds the crossing number of K.

If n is even, then one of the two ways of connecting up through the boundary tiles results
in nugatory crossings in each of the four corners showing that crossing number is not achieved.
Thus if it achieves its crossing number in this projection it must be attached in the other way,
but then as Fig. 2.6 illustrates, we actually have a link of n − 2 components, and not a single
knot as we would like.

Now suppose n is odd. Here either way we choose the tiles on the outside we get exactly two
nugatory crossings in corners that can be removed with type I Reidemeister moves. As shown
in Fig. 2.7 selecting not to have a nugatory crossing in the northwest corner forces nugatory
crossings in the northeast and southwest corners. This shows that an odd, saturated mosaic has
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Figure 2.1: An odd mosaic with near-saturation of degree 2.

Figure 2.2: There are three type 0 tiles in this dual on M6. One could think of the mosaic as a saturated mosaic
with three crossings smoothed reducing the number of components in the link from 4 to 1.
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Figure 2.3: In a 4 × 4 mosaic the the interior S is the shaded 2 × 2 sub-mosaic.

Figure 2.4: A projection of Solomon’s link on a saturated mosaic (M4).

Figure 2.5: A nugatory crossing in the corner.
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two nugatory crossings in the corners. Therefore crossing number is not achieved. In all cases, a
saturated mosaic cannot contain the projection of a knot that achieves its crossing number.

Figure 2.6: A link of n− 2 components.

We next consider mosaics with duals consisting of a single tile, that is |D| = 1. Almost every
knot will fail to achieve its crossing number on such mosaics, and the following lemma precedes
a general theorem for mosaics with |D| = 1.

Lemma 2.3. The trefoil knot has mosaic number 4.

Proof. The trefoil knot has crossing number 3. Since a 3×3 board can only support one crossing,
we must have at least a 4×4 board to have a non-trivial knot. Indeed, the mosaic on the right in
Figure 1.1 shows that the trefoil knot may be embedded on M4 and achieve its crossing number
of 3. Therefore the trefoil knot has mosaic number 4.

Theorem 2.4. Given a knot K with crossing number c, suppose its mosaic number m is odd.
Then c ≤ (m− 2)2 − 2.

Proof. We showed above that an odd mosaic represents a knot with crossing number at most
(n − 2)2 − 1. A mosaic with two interior tiles that are not crossing tiles (type V) will have
c ≤ (m− 2)2− 2 so we are left to focus on the case of exactly one interior tile that is not a type
V tile. If the knot K is achieved with only one interior tile that is not a crossing tile, then this
means |D| = 1. This can only happen if D is either a single type 0 tile or if D is a single type II
tile in one of the corners of S. If D is not in one of the corners of S, then Mn has two opposite
corners with crossings that can be reduced by a type I Reidemeister move just as in a saturated
odd board. Placing the dual in one of the corners can at most remove one of these nugatory
crossings. Thus even though this embedding of K has (n − 2)2 − 1 crossings, K does have an
embedding with (n− 2)2 − 2 crossings or less, bounding the crossing number from above.
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Figure 2.7: Odd mosaic with corners easily removed by type I Reidemeister moves..

Theorem 2.4 establishes the first part of the main theorem in this paper (Theorem 7.2).
Moreover, an odd mosaic that is saturated and with the type V crossings chosen to give an
alternating knot achieves this bound, so the bound is sharp. See Figure 2.1 for the same knot
simplified via two type I Reidemeister moves to show that the knot achieves its crossing number.

Once the even case is established, it will follow that the trefoil is the only knot which can be
constructed on a mosaic whose dual consists of a single tile. For the rest of the paper we focus
on the even mosaic case M2k where we assume T is minimal with respect to all 2k × 2k knot
mosaics giving knot K.

3 Loops in the dual

We now construct an argument showing that we can assume D contains no loops while keeping
T minimal.

Lemma 3.1. Let Mn be a mosaic for a knot K for which T is minimal and the number of
loops in dual D is minimized over all such possible mosaics and for which |D| ≤ n − 4. Let
{c1, c2, . . . , ck} be the set of loops in the dual. Then if the set of loops is not empty, at least one
of the c′is contains a type II tile.

Proof. Since each loop has at least 4 corners, the only way for a loop to avoid a type II tile is if
each corner is part of a type IV tile. If none of the corners are type II then the loop has at least
4 type IV corners that meet other components of the dual. If one of these corners is type IVa
replace it with one that is type IVb; if not do the opposite. This swap yields the connect sum
of the loop in the dual with another component of the dual, decreasing the number of loops in
the dual by one. Since it does not change T and since it still yields a dual for K (the type IV
corners are chosen arbitrarily) we see that the original dual did not meet the hypothesis of the
lemma, a contradiction. Thus the corners of each loop may be assumed to be type II, an even
stronger conclusion than the one type II tile in the lemma.
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Lemma 3.2. If some loop in the dual contains a type II tile then T = (l, l′, l′′) is not minimal.

Proof. If there is such a loop, call it c1. Any time c1 crosses the knot, K, we may dictate that
it goes under K. By virtue of the definition of the dual, c1 never crosses itself. Now remove
c1 from the dual and add it instead to the knot, replacing the knot mosaic with a link mosaic
containing K and an unknot. Next place a type V tile into the mosaic (type V in the link, not
the dual) where the type II tile of c1 had been. Because c1 was entirely below K, and c1 had no
crossings with itself, we have just taken the connect sum of K with an unknot. Thus we have
a new mosaic representing K, but |D| has dropped contradicting the minimality of the ordered
triple T in the original mosaic.

In the proof above we found an unknot in the dual that contained a type II tile, swapped it
out of the dual and into the mosaic and changed the type II tile to a type V, yielding a connect
sum of K with an unknot resulting in a new embedding of K and lowering T . We will repeat
this process multiple times in different contexts throughout the paper and we call the process
corner conversion.

Lemmas 3.1 and 3.2 imply

Corollary 3.3. Let Mn be a mosaic for knot K with |D| ≤ n− 4 and for which T achieves its
minimum over all such mosaics. We may then choose Mn so that simultaneously D contains
no loops and T is minimal.

We now want to look at a particular class of loops. These are the shortest possible loops:
ones of length 4 (contained in exactly 4 tiles) coming from a combination of 4 tiles of types II
and IV. We call these short loops bubbles. We see a bubble in each of the pictures in Figure 3.1.

The proof above showed that the dual may be chosen to contain no loops if T is minimal,
but it did not show that a dual containing loops could not also be minimal. Later we may start
with a dual that contains no loops and use moves that create bubbles, which we then want to
argue is impossible, so we need a stronger result saying that if T is minimal the dual cannot
contain bubbles. In the argument it will be useful to have the following lemma that gives us
some flexibility in where a bubble might be positioned.

Lemma 3.4. Given a knot mosaic Mn for knot K with dual D and ordered triple T , if Mn

contains any 2× n or n× 2 subset of tiles, n ≥ 2, that consists of exclusively type IV tiles, then
we may pick any 2 × 2 subset of these tiles and form a (possibly) new dual for Mn and K in
which there is a bubble in the 2× 2 subset so that T is unchanged for the new dual.

Proof. The proof is easy. Pick each of the four tiles to be IVa or IVb so that they have a bubble
within them. Leave the other type IV tiles unchanged. Since swapping type IV tiles in the dual
doesn’t affect K or T , the new dual has shifted the bubble to the desired location and satisfies
our requirements on K and T .

Figure 3.1: A bubble percolates up through a 3 × 2 set of type IV tiles.

This process allows us to shift the location of an existing bubble through nearby type IV
tiles. We call this process of shifting a bubble to a new location percolation. A 3× 2 example is
shown in Figure 3.1.
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Theorem 3.5. Let Mn be a mosaic for knot K for which T is minimal. D cannot contain a
bubble.

Proof. If we ever have a bubble which contains a type II tile, then we can do a corner conversion
as we did in Lemma 3.2, yielding a new embedding of K but lowering T . This contradicts the
fact that T was minimal. Thus we proceed with the argument under the assumption that the
bubble is entirely contained in type IV tiles.

Next we show the dual is not minimal if the knot intersects either a row or a column of S
containing the bubble. In this case, the ability to rotate the mosaic assures us that we may
assume that the intersection is in a column above the bubble. If there are any type IV tiles
below the knot in those columns, but above the bubble we use Lemma 3.4 to shift the bubble
up to the four tiles directly below the knot.

Explicitly, if K intersects Ti+1,s∪Ti+1,s+1 we let the bubble be contained in tiles Ti−1,s, Ti,s,
Ti−1,s+1, and Ti,s+1. Without loss of generality let K intersect Ti+1,s (and possibly Ti+1,s+1,
too). Because it is directly above a type IV tile, but it contains part of the knot, Ti+1,s is either
type IIb, IIa, or IIIb (the knot cannot intersect the bottome edge of the tile). Ti+1,s+1 is also
above a type IV tile and must pair with Ti+1,s. This means Ti+1,s+1 must be a IIa tile or a type
IV tile if Ti+1,s is type IIb, and Ti+1,s+1 must be IIb tile or a type IIIb if Ti+1,s is IIa or IIIb.

We show moves in Figure 3.2 for six possible combinations that allow us to connect sum
the bubble with the knot and reduce T contradicting minimality – in the case of a type IV in
Ti+1,s+1 we show only type IVb case since the IVa case is nearly identical.

Figure 3.2: A bubble can never appear in the dual when T is minimal. Here we see that if a tile above the bubble
contains an arc of K, there is always an embedding of K that decreases T and ‘bursts’ the bubble.

Finally we are left with the case where neither the columns nor the rows of S containing
the bubble intersect the knot. Thus they are exclusively full of type IV tiles. Since K exists
and in any interesting case has at least one crossing, we know that some row of S intersects K.
(Of course the unknot fits on a 2× 2 board with S = ∅ so we are only interested in knots with
positive crossing number.)

By Lemma 3.4 we can percolate the bubble within the columns containing it to make it
intersect the row that already contains part of K. Now as before we have not changed K or
T . We have, however, reduced to the previous case, which shows T can be reduced without
changing K, contradicting minimality.
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4 Edges in the dual

Since we now know that we can get rid of loops in a dual without increasing T we turn our
attention to edges.

Lemma 4.1. If |D| ≤ n− 4 then no edge in D runs from one side S to the opposite side.

Proof. The proof is trivial since such an edge must be of length at least n− 2.

This implies that if e is an edge of the dual, then the endpoints will have to either be on
adjacent sides, as in edges e1, e2 and e3 in Figure 6.3, or on the same side of S, i.e. starting and
ending in the exact same row or column as in edges f1, f2, f3 and f4 in the same figure. If the
endpoints are on the same side as each other we call it an XX-edge and if adjacent sides we call
it an XY-edge.

Both XX and XY-edges cut S into two disks. The smaller side is considered the outside of
the edge. In topology we may not have a metric so we often avoid talking about the smaller
part of a disk, but a mosaic as an n×n subset of the plane has a natural metric on it so we are
free to use the term.

Because the edges in the dual are relatively short, if e is an XX-edge then the boundary of
the outside (smaller) disk consists of e together with part of one side of S. Likewise if e is an
XY-edge the outside consists of e together with parts of two sides of S. Thus for any arc e we
have a notion of outside. An edge e ⊂ D′ is called outermost in D′ if there are no edges outside
of e on S in D′.

Note that if D contains no loops – which Corollary 3.3 allows us to assume – and D′ 6= ∅, so
there is at least one edge, then there must be an outermost edge e. Also note that our definition
is not quite the same as the traditional definition of outermost arcs on disks in topology. If e is
outermost in our context it is outermost in the traditional definition, but not every traditionally
outermost arc is outermost in our definition because it might be outermost, but on the wrong
side (the side of its larger disk). An edge can still be outermost even if there is a type 0 tile of
D outside of it.

5 Reduction moves

We establish a set of moves that when applied to the arcs of the dual will reduce the ordered
triple T without changing the isotopy class of the knot. One primary use of the moves is to
lower an arc a of the dual that represents a local maximum (possibly after rotating the mosaic).
This will eventually lead to the conclusion first that no such moves can be made to the edges of
D, and then after a further argument that D contains no arcs at all if T is minimal. We define
the moves starting with the more elementary moves.

5.1 The type IV moves: bubble release and XX-through-XY moves

In the proof of Lemma 3.1 we swapped type IV tiles to reduce the number of loops in a dual by
taking the connect sum of a loop with another part of the dual. We now consider the inverse
operation on the dual when it would create a bubble. We define a bubble release move when
we swap a type IVa tile for IVb or vice-versa to yield a bubble without altering K or T . Such
a move is pictured in Figure 5.1.

We know, however, by Theorem 3.5 that a minimal dual can never contain a bubble and T
is unchanged by a bubble release move so we see immediately the following lemma.

Lemma 5.1. If T is minimal then D cannot contain tiles on which we can perform a bubble
release move.

The other type IV move is the XX-through-XY move. Let D contain e1 an XY-edge that
has e2 an XX-edge outside of it such that the two edges share a type IV tile. Switching the tile
from IVa to IVb or vice-versa will, of course, have no effect on T or K, but will replace e1 and
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Figure 5.1: Neither the embedding of the knot nor T are altered when we break a bubble off of an arc of the dual
using the bubble release move. Note that the move is identical if any of the type II dual tiles are swapped for type
IV tiles.

e2 with a new XY-edge and a new XX-edge. Call the XY-edge e′1 and the XX-edge e′2. The
move reduces the overall number of XX-edges outside of XY-edges. In particular at the very
least e′2 is not outside of e′1 and e′1 has fewer XX-edges outside of it than e1 did.

Iterating this process will eventually terminate since the number of type IV tiles is bounded
by |D|.

We define a knot mosaic together with a dual D and associated ordered triple T to be a
minimal embedding for a knot K if T is minimal, D contains no loops and in D no XX-through-
XY moves are possible. Corollary 3.3 together with the process we have just described assures
that every knot K that has a knot mosaic with |D| ≤ n− 4 has a minimal embedding. We call
the dual in a minimal embedding a minimal dual.

5.2 Corner-corner moves

We describe this move in terms of an arc that acts as a local maximum for an edge and is moved
downward. By symmetry, we can rotate the mosaic any multiple of 90 degrees or reflect along
a horizontal or vertical line so the move is equally valid if the arc is a minimum and is moved
upward, or one that is concave right and is moved to the right or concave left and is moved left.

Corner-corner move: Let e be an edge in D that intersects row i in an arc a that represents
a local maximum for e. A local maximum must run directly across row i, i > 2, from a type
IIb (or IVb) tile in column s to a type IIa (or IVa) tile in column t with s < t as in Figure 5.2.
We want to reduce the ordered triple T = (l, l′, l′′) by moving part of the knot up across a and
shorten a by moving it down. Figure 5.3 shows the basic move.

We pay close attention to any portion of the dual in tiles Ti−1,w with s ≤ w ≤ t (row i− 1
directly under a). Since each of the tiles of a of the form Ti,w with s < w < t consists exclusively
of type IIIa tiles, clearly those tiles of the form Ti−1,w cannot ever be type IIc, IId IIIb, IV or
V.

Certainly Ti−1,w can be a Type 0 tile as shown, together with the corresponding corner-corner
move in, Figure 5.3. On the other hand, if there is a tile in the dual Ti−1,w with s < w < t
that is type IIa, IIb, or IIIa then the corner-corner move is undefined on a. Such examples are
seen in the nested arcs in Figure 6.3. Another obstruction to the definition we can encounter is
that if Ti−1,t is type IId, IVa, or IVb. Symmetrically it is also undefined if the dual tile Ti−1,s
is type IIc, IVa, or IVb. We see arcs of this form in Figure 5.4. We will never need to use the
corner-corner move in any of the undefined contexts, so the lack of definition here will not be a
problem.

We now focus on the definition of the move in the situations where it can be applied. The
move at its core just takes an arc a that is a local maximum for the dual and pushes it down one
row when there is nothing from the dual already below it to block it. The exact prescription is
given in two parts. For each w, s < w < t we switch Ti−1,w with Ti,w. This tells us how we apply
the move to tiles that are between the corners of the arc, but not in the corners themselves. We
now specify the move on the two corner tiles and the two tiles directly below them (Ti,s, Ti−1,s,
Ti,t and Ti−1,t). The corner tiles Ti,s and Ti,t are either type II tiles or type IV. When the move
is defined tile Ti−1,s must be type IIIb tile or type IIc. On the other corner, Ti−1,t is either type
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* * * * * *

Figure 5.2: Each * denotes one of four types of corners possible in a corner-corner arc (two up to reflective
symmetry).

Figure 5.3: We see a basic corner-corner move.

a1

a′1

a2

a′2

Figure 5.4: The corner-corner move is not defined on the arcs a1 and a2 at the top of the edges because of the
bottom tile in a′1 and a′2 blocking the move, but this is not a problem because it is defined on the two-tile arcs a′1
and a′2.
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IIIb or IId. As mentioned earlier, the move is not defined if either of the tiles below the corners
are type IV; we address this situation later.

The swap for a typical situation is pictured in Figure 5.3. If the tile Ti,s or Ti,t is type II
we replace it with a type 0 tile. If it is type IVa it is replaced with a type IIc tile. A type IVb
is replaced with type IId. If the tile Ti−1,s is type IIIb it is replaced by a type IIb tile. If it is
type IId, it is replaced by IIIa. If Ti−1,t is type IIIb then it is replaced by type IIa. If it is IIc,
it is replaced by type IIIa.

Lemma 5.2. A corner-corner move causes a planar isotopy of K and reduces T . Hence there
cannot be an arc on which a corner-corner move can be applied in a mosaic that minimizes T .

Proof. The lemma follows directly from the definition of the move. The tiles between columns
s and t swap places, but pairwise remain identical and thus cannot change T . As seen in the
figures no matter which configuration appears in column s and t, the ordered triple T decreases
in these columns. Specifically, the contributions to |D| remains the same, but the contribution
in column s to either |D′| or |D′′| is reduced by one and the same is true in column t.

We now turn our attention to the two cases in which the corner-corner move was not defined
to see that neither of these is a problem. The following lemma states that the first one can never
occur in a reduced dual.

Lemma 5.3. A corner-corner arc a with Ti−1,t either type IId or type IVb or with Ti−1,s type
IIc or IVa cannot occur if T is minimal.

Proof. Given a in the dual running from Ti,s to Ti,t if Ti−1,t in the dual is either type IVb
(meaning Ri−1,t is type I) or type IId then the corner-corner move is not defined on a. Let the
portion of e in tiles Ti,t and Ti−1,t be called a′. Arcs a′1 and a′2 in Figure 5.4 are examples of
such arcs. If t = s+ 1 and Ti,s is type IV then we are in a situation such as Figure 5.1, but this
is impossible since T is minimal and the existence of a bubble release move would contradict
minimality. Given the structure of a corner-corner arc a together with adjacent two-tile corner-
corner arc a′, this is the only case in which the corner-corner move is not defined on a′ Therefore
we push it to the left so in all other cases a corner-corner move can be applied to a′ reducing T
just as it can be to a′1 and a′2 in Figure 5.4. By Corollary 5.2 we know that the move cannot
happen if T is minimal, so Ti−1,t cannot be type IId or IVb. The analogous argument holds by
reflective symmetry if Ti−1,s is type IIc or IVa.

Thus it is not a problem that the corner-corner move was not defined in this context. We
are left only with the following situations in which the corner-corner move was not defined. We
could have a corner-corner arc a in the dual running across row i from Ti,s to Ti,t and if t > s+1
we have a dual tile Ti−1,w with s < w < t that is type IIa, IIb, or IIIa. If t = s + 1 then Ti,s

is type IVb and Ti−1,t is type IVa; Ti,s may also be type IVb and Ti−1,t may be type IVa if
t > s + 1, too, of course.

Lemma 5.4. If T is minimal, then the only way we can have a corner-corner arc a in row i
is if a is part of a nested series of corner-corner arcs {a2, a3 . . . ai−1} with each aj contained in
row j for 2 ≤ j ≤ i− 1.

Proof. We have seen already that the definition of the dual dramatically limits the choices for
tiles beneath a in row i − 1 so the arc of the dual containing Ti−1,w must be a corner-corner
arc ai−1 from Ti−1,s′ to Ti−1,t′ for some s′ and t′ with s ≤ s′ < t′ ≤ t. Iterating the process
we either find a corner-corner arc that does not have a corner-corner arc below it in some row
j with 2 < j ≤ i contradicting minimality or there are nested corner-corner arcs extending in
every row from i down to 2 as in the edges e1, e2 and e3 in Figure 6.3.
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5.3 Corner-edge moves

We again for simplicity choose to describe this move as it moves an arc a of the dual down, but
as before, symmetrical moves to the right, left, or up are all valid by rotations or reflections of
the mosaic. The move is very similar to the corner-corner move as are the arguments about it.

Our goal in applying the corner-edge move is to reduce T , and we will always do any available
corner-corner moves before doing any corner-edge moves, so we need not worry about defining
the corner-edge move on an edge for which a corner-corner move is possible.

Corner-edge move: Let e be an edge of the dual that intersects row i > 2 in an arc a
running directly across i in columns 2 through t and turning down in column t, t ≥ 2. More
precisely e intersects row i in an arc a such that each tile in the dual Ti,w, w < t is a type IIIa
tile and tile Ti,t is a type IIa or IVa tile as in Figures 5.5 and 5.6, respectively.

As in the corner-corner move, we pay close attention to any portion of the dual in tiles Ti−1,w
with 2 ≤ w < t (row i− 1 directly under a). Again Ti−1,w cannot ever be type IIc, IId IIIb, IV
or V, but can be a type 0 tile without causing any problems.

As before, if there is a tile in the dual Ti−1,w with s < w < t that is type IIa, IIb, or IIIa then
the corner-edge move is undefined on a. Such examples are seen in the nested edges f1, f2, f3
and f4 in Figure 6.3.

We may have an obstruction where t = 2, Ti−1,t is type IId or type IVb and Ti,t ∪ Ti−1,t
forms a two tile outermost XX-edge, but we never apply a corner-edge move in this context so
we do not mind this obstruction. With this exception we do not encounter an obstruction to the
definition where Ti−1,t is either type IId or type IVa because it would lead to a reduction via a
corner-corner move of tiles Ti,t ∪ Ti−1,t to the left which already contradicts the minimality of
T for the dual.

Figure 5.5: The corner-edge move may have a type II tile in its corner.

We again reduce T by moving part of the knot across the dual. Figures 5.5, 5.6, and 5.7
show the basic move.

Because there can be no corner-corner moves in a minimal dual and there are never type V
tiles in a dual, the tile Ti−1,t must be either a type IIIb, type IIc or type IVa. If t = 2 and Ti−1,t
is type IVa then the corner-edge move is not defined, but again this is an obstruction that we
do not mind as we will never need to apply it in this context. Instead examine the case where
t > 2. If Ti−1,t is type IVa we could swap the type IVa dual tile with a type IVb tile, replacing
dual D by dual B without affecting the knot. Since the only thing we have changed to go from
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Figure 5.6: Alternatively, the corner-edge move may have a type IV tile in its corner. The resulting move is only
slightly different.

D to B is one type IV tile for another, the ordered triple TD for D is clearly identical to the
ordered triple TB for B. TB is reduced by a corner-corner move, showing it was not minimal
for the knot K whose dual is B (and D) and therefore TD also was not minimal for K. Since
we always choose our embedding of K so that T is minimal we may assume that tile Ti−1,t is
not type IVa when t > 2.

We are now left with the possibilities that Ti−1,t must be type IIIb (Figure 5.5) or IIc as
depicted in Figure 5.7 and we define the corner-edge move accordingly. The exact prescription
for the move is that for each w < s we switch tile Ti−1,w with tile Ti,w. Ti−1,t and tile Ti,t

are treated exactly as they were in the corner-corner move: if Ti,t is type II we replace it with
a type 0 tile. If it is type IVa it is replaced with a type IIc tile. If Ti−1,t is type IIIb then it
is replaced by type IIa. If it is IIc, it is replaced by type IIIa. Typical corner-edge moves are
depicted in Figures 5.5 through 5.7.

Figure 5.7: Ti−1,t may be a type II tile oriented as pictured instead of a type III tile. The resulting move still
reduces T .
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Again this move was described in terms of a row, but it can be rotated or reflected to move
corner to edge row arcs up and down and corner to edge column arcs right and left.

Lemma 5.5. A corner-edge move causes only a planar isotopy of K and reduces T . Therefore
in a minimal mosaic, there cannot be an arc on which a corner-edge move may be applied.

Proof. The lemma follows directly from the definition of the move. The argument is analogous
to in the corner-corner move.

We now have the moves defined and in the next section will turn our focus to the XX-
edges (edges with both endpoints on the same edge), showing that they cannot exist without
contradicting minimality. Then once we know there are no edges of this type we will eliminate
XY-edges, too.

6 Reduction steps towards the main theorem

Lemma 6.1. If E = {e1, e2, . . . , en} is the set of all edges in D and |D| ≤ n− 4 then there is
some ei containing a type II tile in the dual. If the XX-edges do not share a type IV tile with
the XY-edges then at least one of the XX-edges contains a type II tile or the set is empty. The
same is true for the XY-edges.

Proof. Each XX-edge has at least two “outside” corners and each XY-edge must have at least
one. These corners must either be type II tiles or Type IV tiles where they meet another edge
of the dual. To avoid any type II tiles, the dual would have to stretch from one side of S to the
opposite side, but this would mean |D| ≥ n− 2 violating the hypothesis of the lemma.

Lemmas 6.2 through 6.6 put together will show that if e is an XX-edge with both endpoints
on the bottom in a minimal dual then e contains exactly one corner-corner arc, and that arc
can only be concave down. We note that as always, symmetrical arguments can be made by
rotation and reflection for edges with endpoints on the other sides of S.

Lemma 6.2. If e is an XX-edge in D with both endpoints on the bottom side of S or an XY-edge
with one end point on the bottom of S and the other on the left side and |D| ≤ n− 4 and T is
minimal then e cannot contain a corner-corner arc a that is concave up. By symmetry this also
means the XY-edge cannot have a corner-corner arc that is concave right.

Proof. By Lemma 5.4, T can be reduced via a corner-corner move applied to a unless there is
a nested set of corner-corner arcs inside of a including one in each of the rows of S above a.
This, however, cannot happen since it would imply that there are dual tiles in every row of S,
contradicting |D| ≤ n− 4.

Lemma 6.3. Suppose |D| ≤ n − 4 and T minimal. Let e be an XX-edge in D with both
endpoints on the bottom edge of S or an XY-edge with one end point on the bottom of S. If a
is a corner-corner arc of e in row i that is concave down, then a is the only corner-corner arc
on e that is concave down.

Proof. A second concave down corner-corner arc would require a concave up corner-corner arc
between the two: an edge in the plane with endpoints at the same height may not have two
local maxima without a local minimum. We know we cannot have a concave up corner-corner
arc on e by Lemma 6.2.

Lemma 6.4. Let e be an XX-edge or XY-edge in D where |D| ≤ n − 4 and T is minimal.
Then e cannot contain a corner-corner arc concave to the left (representing a maximum in the
direction right) and also a corner-corner arc concave right.
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Proof. Each corner-corner arc would need nested corner-corner arcs going all the way to the
edge of S. This would, of course, require at least one tile in each column of S, contradicting the
fact that |D| ≤ n− 4.

We have now established several lemmas that work for both XX-edges and XY-edges. The
next few lemmas will be just concerned with XX-edges. After establishing further structure on
the XX-edges we will be able to return to the XY-edges and deal with them more efficiently.

Lemma 6.5. Let e be an XX-edge in D with both endpoints on the bottom edge of S with
|D| ≤ n − 4 and T minimal. Let the left endpoint of e be in column s and the right endpoint
in column t, s < t. We cannot encounter a corner-corner arc concave to the left intersecting
column w for w < t. The same is true for corner-corner arcs concave right in columns w with
s < w

Proof. If a is such a corner-corner arc in e, to connect with T2,t in the first case and T2,s in the
second, e would need to turn around via a corner-corner arc concave in the opposite direction
contradicting Lemma 6.4.

Lemma 6.6. Let e be an XX-edge in a minimal dual D with both endpoints on the bottom edge
of S with |D| ≤ n − 4 and T minimal. Then e cannot have any corner-corner arcs concave to
the left or right.

Proof. We show the proof for corner-corner arcs concave to the right since the proof to the left
is identical up to symmetry. By Lemma 6.5 the concave right corner-corner arc a must start
and end in column w, w ≤ s. However by Lemma 5.4, a must have nested corner-corner arcs
inside of it extending all the way to the right side of S. Since a is on the left side of e, this
implies that at least one of the nested corner-corner arcs for a is also in e. For e to contain two
corner-corner arcs that are concave to the right it must also contain a corner-corner arc concave
to the left between them. This contradicts Lemma 6.4 . Thus there were no corner-corner arcs
concave to the right.

These lemmas imply

Corollary 6.7. Let e be an XX-edge in minimal dual D with both endpoints on the bottom edge
of S with |D| ≤ n − 4 and T minimal. Let the left endpoint of e be in column s and the right
endpoint in column t, s < t. Let row i contain the maximum of e. Then e is strictly contained
between columns s and t (inclusive) and below row i (inclusive).

We now apply this result to outermost XX-edges to build an argument that they must consist
of only two tiles exemplified by edge e1 in Figure 6.3.

Lemma 6.8. If e is an outermost XX-edge in minimal dual D with |D| ≤ n− 4 then e consists
of two adjacent tiles in the second layer. Each of the tiles is either type II or type IV.

Proof. Without loss of generality let both endpoints of e be on the bottom edge of S. First we
argue that if e is an outermost edge then e is totally contained in row 2 and consists of T2,s a
type IIb or IVb tile, T2,t a type IIa or IVa tile and type IIIa tiles T2,w for s < w < t (if t = s+ 1
then this last set of tiles is not used). Up to rotation, h1 and e1 are examples of such arcs in
Figure 6.3. We then strengthen the result to show that e not only is in the second row, but it
contains only two tiles.

Let a be the corner-corner arc of e in row i, the highest row that contains a tile of e. If
i = 2 we are done with the first step of the proof. If i > 2 then the row i + 1 just above a ⊂ e
cannot contain any portion of e since it is above the global maximum of e and this dictates that
the tiles in row i + 1 are inside (not outside) of e. In turn this means that the row i − 1 just
below a must either contain part of e or be outside of e. Since T is minimal, there must be a
corner-corner arc a′ ⊂ D below a or we could do a corner-corner move on a pushing it down
and reducing T . Then a′ cannot be part of an edge other than e since that would imply it was
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outside of e and e is outermost. Thus a′ ⊂ e, but this contradicts Lemma 6.3. This implies that
a is in row 2 and this can only happen if e = a and consists of T2,s a type IIb tile, T2,t a type
IIa tile and T2,w type IIIa tiles for s < w < t.

Now we know that e is entirely contained in row 2. If e contains more than 2 tiles, then the
leftmost tile of e can be moved to the right using a corner-edge move to reduce T contradicting
minimality. Thus e must be just 2 tiles long and we are only left with the desired type of
outermost XX-edges (see arc e1 in Figure 6.3).

Lemma 6.9. If e is an XX-edge in a minimal dual D with both endpoints on the bottom edge
of S and |D| ≤ n − 4 and the maximum of e occurs in column i, i > 2 then there is a set of
nested edges {e2, e3 . . . ei−1} outside of e with the maximum of each ej in row j.

Proof. We must have nested corner-corner arcs outside of e in each row and each edge has only
one corner-corner arc.

Lemma 6.10. If e is an XX-edge in minimal dual D with both endpoints on the bottom edge of
S and |D| ≤ n− 4 and the left endpoint of e occurs in column s at T2,s, and e is not outermost,
then there is a nested set of edges {es+1, es+2 . . . ek} outside of e with the left endpoint of ej in
column j for each j, s + 1 ≤ j ≤ k and ek an outermost edge in D.

Proof. Because the XX-edges contain no corner-corner arcs that are concave left or right we
can always use a corner-edge move to reduce T unless there is an edge with its endpoint in the
adjacent column blocking the move.

Lemma 6.11. If e is an XX-edge in D and |D| ≤ n−4 and all the edges outside of e are nested
with each other, and e contains a type II tile, then D is not minimal.

Proof. Examine K ⊂ Mn. If the arcs of K contained in S are connected using the tiles under
e in row 1, as it does in the top mosaic in Figure 6.1, then the edge in row 1 also runs under
an outermost edge e′ outside of e (e = e′ if e is outermost). We can add e′ to K, connecting it
up to the original knot as in the bottom picture in Figure 6.1, and obtain a knot isotopic to K,
but we have reduced the ordered triple contradicting minimality.

If K does not use the tiles in row 1 under e, then K is disjoint from all of the tiles in row 1
between the endpoints of e. If necessary change crossings between the knot and dual – but not
the knot with itself, thus not changing the knot at all – to make sure e always goes under K,
and connect e to itself through row 2 giving a loop. Remove the loop from the dual and add it
to the mosaic creating a link mosaic with two components, K and an unknot. This takes us to
the middle picture in Figure 6.2. Then use a corner conversion by placing a type V crossing tile
where the type II tile of e had been going from the middle to the bottom picture in Figure 6.2.
As in the proof of Lemma 3.2, a corner conversion takes the connect sum of K with an unknot
giving another version of K on an n×n mosaic, but with a reduced ordered triple contradicting
the minimality of T .

Lemma 6.12. If e is an XX-edge in a minimal dual D and |D| ≤ n − 4 then all the edges
outside of e are nested with each other.

Proof. If not, then examine the outermost edge e which has edges outside of it which are not
nested with each other. Let e1 and e2 be the innermost non-nested edges outside of e (so e1 is
not outside of e2 and vice-versa and e1 and e2 are just outside of e). None of the corners at the
top of e1 ∪ e2 can be type II or T is not minimal by the previous lemma, but if they are all type
IV tiles then e has a corner-corner arc that is concave up contradicting Lemma 6.2.

These lemmas imply

Theorem 6.13. D contains no XX-edges containing a type II tile if D is chosen minimally.
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Figure 6.1: If K passes outside of an outermost arc of the dual, the move pictured shows the dual is not reduced.
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Figure 6.2: If a nested XX-edge in the dual has a type II tile in the dual and K does not pass outside the edge, we
can alter the dual reducing T .

20



f1 f2 f3 f4 e1 e2 e3

h

d1 d2 d3

g1

g2

g3

Figure 6.3: An example of a knot mosaic and its dual.
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Now that we know that all the corners in an XX-edge are type IV we exploit this fact to get
rid of all XX-edges.

Lemma 6.14. Let e be an XX-edge with both end points on the bottom of S for a minimal dual
D with |D| ≤ n − 4. Then e cannot simultaneously share a type IV tile with an XY-edge that
has its end point on the right side of S and share a type IV with another XY-edge that has its
end point on the left side of S.

Proof. This is clear because D would stretch all the way across S dictating |D| ≥ n− 2.

Theorem 6.15. If |D| ≤ n− 4 and D is chosen minimally, then D contains no XX-edges.

Proof. If D does contain an XX-edge then there is at least one that is not outside of any of the
other XX-edges – the innermost edge from any of the nested sequences would suffice. Call that
edge e. Without loss of generality let e have both end points on the bottom of S, specifically
in tiles T2,s and T2,t with s < t. We know e has no type II tiles by Theorem 6.13, but it must
contain two type IV tiles at its maximum. Let f be an edge that meets e in one of these type
IV tiles. Note that the tile coming from a maximum for e implies that f is not outside of e.
Since e has endpoints on the bottom of S and |D| ≤ n− 4 we know f cannot have an end point
on the top edge of S. If there is a second edge g that shares the other type IV tile from the
maximum of e, Lemma 6.14 says that it cannot be the case that one of these edges had an end
point on the right side of S and the other on the left side so without loss of generality we may
assume that the end points of f and g are contained in at most the left and bottom sides of S.

We next argue that both end points of f (or g) cannot just be on the bottom of S. If f has
both end points on the bottom it is by definition an XX-edge, but recall that we chose e so it
was not outside of any XX-edges so we know that e is not outside of f . As a result both end
points of f have to be contained in rows that are on the same side of rows containing the end
points of e. In particular f must have end points in tiles T2,u and T2,v with u < v since they
are on the bottom of S, but then since the two edges are not nested and do not intersect we
must have u < v < s < t or s < t < u < v. Either way by Corollary 6.7 f never intersects
any of the columns between s and t and e never leaves these columns so they cannot contain a
common type IV tile. This implies that f does not have both end points on the bottom of S.
Now without loss of generality f (and any edge sharing a type IV tile with e) either has both
end points on the left side of S if it is an XX-edge or one on the left side of S and the other on
the bottom side if it is an XY-edge. In the latter case, since e is not outside of f we also know
that the end point on the bottom of S is in some tile T2,u with u < s < t.

Now examine again the top right type IV tile from the maximum of e and the edge f that
shares this tile. The portion of f within this tile looks like a IIc tile. Because both of its end
points are to the left of e and it does not intersect e we know f must contain a concave up
corner-corner arc to contain this tile. This, however, contradicts Lemma 6.2.

Thus e cannot exist so there are no XX-edges in the dual.

Now we know by Lemma 6.1 that if there are any edges there must be an XY-edge, say e1,
containing a type II tile. From here we proceed by eliminating XY-edges.

Theorem 6.16. If |D| ≤ n− 4 and D is chosen minimally, then D contains no XY-edges.

Proof. We know all edges must be XY-edges, and that if the set of edges is nonempty then at
least one of the XY-edges contains a type II tile by Lemma 6.1.

Let e be such an XY-edge. We can rotate the entire mosaic if necessary until it encloses the
bottom left corner, so let e have one endpoint in tile Ts,2 on the left edge of S and the other in
T2,t on the bottom edge of S enclosing the bottom left corner on its outside. First observe that e
cannot contain a corner-corner arc. Any corner-corner arc requires a set of nested corner-corner
arcs terminating in an XX-edge on the boundary of S. D, however, contains no XX-edges so
this is impossible.
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The lack of any corner-corner arcs implies that e is completely contained in the rows below
row s (inclusive) and to the left of column t (inclusive). In turn this implies that if s > 2 then
there must be a set of nested XY-edges {e2, e3 . . . ew . . . es−1} for each w, 2 ≤ w < s. If not we
could apply a corner-edge move to reduce T . The analogous result holds for the endpoints on
the bottom of S with respect to the columns.

Now we close the argument in the same manner as before. The outermost XY-edge must be
a type II tile or one of the arcs from a type IV tile in T2,2. The next most outermost has one
endpoint in tile T2,3 and the other in T3,2 etc. Examine K ⊂Mn. If K runs through row 1 and
column 1 past the ends of these arcs, then we add the outermost XY-edge to K and connect it
up to give a planar isotopy of K and reducing T , contradicting minimality. If not, recall that e
contains a type II tile. Since K does not go through the tiles in row 1 or column 1 outside of e
we can turn e into an unknot by hooking the endpoints of e to itself through these tiles. There
is no effect on K if we assume that e always passes under K. As in previous theorems we use a
corner conversion to replace the hypothesized type II tile from e with a type V tile to connect
sum the new unknot with K, yielding another embedding of a knot isotopic to K for which T
has decreased contradicting minimality. Thus there can be no XY-edges.

Since the dual contains no XX-edges, no XY-edges and no loops, we may now conclude the
following Corollary.

Corollary 6.17. If Mn = M2k is an even knot mosaic yielding knot K, with minimal dual D
and |D| ≤ n− 4, then l′ = |D′| = 0. Therefore we may assume D consists exclusively of type 0
tiles.

7 Proof of the main result for even boards

We use Corollary 6.17 to show our main theorem below.

Theorem 7.1. If Mn = M2k is an even knot mosaic yielding knot K, then the crossing number
of K is less than (n− 2)2 − (n− 4).

Proof. A mosaic with |D| = l and D′ = ∅ has l type 0 tiles in the dual and nothing else. It
therefore is obtained from a saturated mosaic by smoothing l crossings. In the language of tiles,
we are replacing l type V tiles in the link with l type IV tiles. Each time this is done the number
of components in the mosaic changes by at most one.

If l > n − 4 then K has at most (n − 2)2 − (n − 5) crossings failing to exceed our bound.
As we saw in the section on saturated mosaics, a saturated even mosaic has n − 2 or n − 3
components depending on how the arcs contained in S are connected in the boundary tiles of
the mosaic. Since we are only smoothing l crossings, we see that if l < n− 4 this leaves at least
2 components and we did not really have a knot mosaic. In this context we insist that we are
left with a knot, that l ≤ n− 4 and also that l ≥ n− 4 so it must be that l = n− 4.

If the saturated mosaic starts with n− 2 components, smoothing n− 4 crossings still leaves
at least 2 components, so to avoid a contradiction the original saturated mosaic must have
been connected to yield n− 3 components. This, however, can only happen when we also have
nugatory crossings in each of the four corners of the mosaic. If the n−4 type 0 tiles yield a knot
then none of them are in a corner of S as smoothing one of these crossings fails to lower the
number of components in the link. This means that the knot that results from smoothing n− 4
crossings will have (n−2)2−(n−4) crossings, but it also still has the 4 trivial loops in the corners
that can be removed with type I Reidemeister moves. Thus K could be embedded with 4 fewer
crossings, showing its crossing number is at most (n−2)2−(n−4)−4 < (n−2)2−(n−4) so this
knot does not exceed our bound on crossing number on even mosaics. Therefore a knot mosaic
on an even board cannot have crossing number greater than or equal to (n− 2)2 − (n− 4).

Note that the trefoil establishes that this bound is sharp since it is achievable on M4 showing
a knot of crossing number 3 can be built on a 4× 4 board, but our bound says that we cannot
have a knot of crossing number 4 on such a board.
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The primary goal of this paper is to refine existing upper bounds for crossing number.
Theorems 2.4 and 7.1 together establish the following upper bound for crossing number given
mosaic number.

Theorem 7.2 (New Upper Bound for Crossing Number). Given an m-mosaic and any knot
K that is projected onto the mosaic, the crossing number c of K is bounded above by the following:

c ≤

{
(m− 2)2 − 2 if m = 2k + 1

(m− 2)2 − (m− 3) if m = 2k.

8 Lower bound for mosaic number

At the beginning of this paper we used Theorem 1.1 to relate crossing number and mosaic
number. In a similar fashion, Theorem 7.2 may be used to bound a knot’s mosaic number from
below. First we define

B1 =
√

2 + c + 2

B2 =
5 +
√

4c− 3

2

As a corollary to Theorem 7.2, we have

Corollary 8.1 (New Lower Bound for Mosaic Number). Let K be a knot with crossing number
c and mosaic number m. Then m ≥ min{B1, B2}.

This will prove useful in future computations of mosaic number. For now, we will briefly
explore the behavior of B1 and B2. It is easy to see that B1 and B2 are asymptotic, as

lim
c→∞

B1

B2
= 1.

Informally, this means that B1 and B2, as functions of c, grow at relatively the same rate. A
stronger result is that the difference |B1 −B2| is bounded by 1

2 , and although this difference is
always increasing, it turns out that

lim
c→∞

|B1 −B2| = 1
2 .

This result may be somewhat surprising: our work has shown that the even and odd cases
require different approaches, but in reality the estimates for each are actually quite similar and
the predictive power of one never strays too far from the other.

9 Future research directions

Our research has provoked several questions about knot mosaics which are left open to further
investigation.

Question. How does mosaic number behave for the connect sum of knots?

Question. Are there any knots whose mosaic number is 2 greater than the number predicted by
Theorem 7.2?

Question. What are the mosaic numbers for all knots of 10 crossings or fewer?

It is also natural to look at a more general class of mosaics where instead of insisting the
board be n× n we allow it to be n×m. One might then define the rectangular mosaic number
in terms of the number of tiles in the mosaic or perhaps even better the number of tiles on its
interior (of course if we wanted to stay more parallel to the current definition we could use the
square root of the number of tiles). Mosaics that need not be square should allow for more
efficient embeddings especially in the case of knots that are not prime.
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Question. How does crossing number relate to rectangular mosaic number?

The authors in [6] establish an upper bound on the mosaic number of a knot using arc index,
and use this to prove stronger bounds for several classes of knots. Their results, together with
Theorem 7.2 and Corollary 8.1 of this paper, provide a clearer picture of the relation between
the mosaic number and crossing number of a knot. However, in general a more precise formula
that relates the mosaic number and crossing number of a knot would be desirable. The mosaic
number of some relatively simple knots remains unknown.

Conjecture. 61 and 63 have mosaic number 6.

Note a 5×5 board is simple enough that it can only support 9 crossings. It is likely that one
could build these two knots on a 6× 6 board and then simply analyze all possible 5× 5 boards
to establish the answer to the conjecture above, but for knots with higher crossing numbers
the complexity of their mosaic representations increases rapidly making a case by case analysis
impractical.

Next recall the class of knots first introduced in Section 2, that is, the alternating class
of knots that fit on M2k+1 with |D| = 2. We know several things about these knots already,
namely:

• There is an odd knot mosaic (e.g. M5,M7, etc.) with a choice of dual such that |D| = 2
for each of these knots.

• The crossing number is given by: c = (2k− 1)2− 2, where k ≥ 1. In particular, this shows
that the bound in Theorem 2.4 is sharp.

• 74 is the smallest knot of this class; the next would have 23 crossings.

The 74 knot shows up in many artifacts in Asian culture where it is called the endless knot,
perhaps due to its exquisite symmetry. For this reason, we shall refer to the family of knots
that embeds on M2k+1 with |D| = 2 as E2k+1, with E being an homage to the endless knot.

A knot is invertible if it can be deformed to itself, reversing orientation along the way. All
knots with 7 crossings or less are known to be invertible [2], so in particular the 74 knot is
invertible. Given the precise crossing structure of the E2k+1 knots and the symmetries of the
mosaic board itself, one can easily prove that each E2k+1 knot is invertible.

An important invariant in knot theory is chirality. A knot is amphichiral if it is ambient
isotopic to its mirror image; otherwise, the knot is chiral [1]. Knot polynomials are a useful
tool in determining chirality: in [4], a knot is shown to be chiral if its Jones polynomial is not
palindromic, i.e. if V (K, t) 6= V (K, t−1). One may compute the Jones polynomial for the 74
knot – the smallest knot in E2k+1 – and see that it is not palindromic, indicating that 74 is in
fact a chiral knot.

Conjecture. E2k+1 knots are chiral.

This conjecture is supported by the crossing pattern of these knots, but as it would be
difficult to calculate knot polynomials even for the 23 crossing endless knot, not to mention
larger crossing numbers, the conjecture remains open to other methods. Nevertheless, one
potential implication is that for each Mn where n is odd, there would be two endless knots, a
left-handed and right-handed version, that are representable on Mn.

Finally, we suggest an extension of knot mosaics to three dimensions. Using cubic blocks
rather than square tiles, we can represent a knot in its three dimensional form without imposing
crossings onto a 2D representation, while still maintaining a degree of rigidity. Define a standard
cube as an analog of a mosaic tile: a cube contains 0, 1, 2 or 3 strands, and each face of the cube
intersects at most 1 strand in the center of the face. In addition, for each strand within a cube
there is at most one critical point in any direction on the interior arc of the strand. Define an
n-cubic knot as an n × n × n array of suitably connected standard cubes. Furthermore, define
the grid number of a knot (analog of mosaic number) to be the smallest natural number g such
that the knot is representable as a g-cubic knot. Note that mosaic number is a (bad) upper
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bound for grid number. Further research questions on the topic of cubic knots are proposed
below.

Question. For a knot K with mosaic number m and grid number g, g ≤ m. Find a sharper
upper bound for g.

The authors would like to thank Sam Lomonaco and Lou Kauffman for use of many of the
figures in this paper, as well as Joe Paat and Lew Ludwig for inspirational discussions resulting
from their paper with Erica Evans [8].
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