1. (24) a. In the diagram below to the to the right, helium atoms are represented by unshaded spheres, neon atoms by gray spheres, and argon atoms by black spheres. If the total pressure in the container is 900 mm Hg , what is the partial pressure of helium?
A) 90 mm Hg
B 180 mm HgC$) 270 \mathrm{~mm} \mathrm{Hg}$
D) 450 mm Hg
b. Which of the following is not a state function?
A) enthalpy
(B) heat
C) internal energy
D) volume

c. Which one of the following gases will have the highest rate of effusion?
A) NO_{2}
(B) $\mathrm{N}_{2} \mathrm{O}$
C) $\mathrm{N}_{2} \mathrm{O}_{4}$
D) NO_{3}
$\mathrm{SF}_{6}=146 \mathrm{~g} / \mathrm{mol}$
d. At what temperature will sulfur hexafluoride molecules have the same average speed as argon atoms at $20^{\circ} \mathrm{C}$?
293 K A) $-22 \not 0^{\circ} \mathrm{C}$
B) $73.2^{\circ} \mathrm{C}$
C) $381^{\circ} \mathrm{C}$
(D) $799^{\circ} \mathrm{C}$
e. Which substance in each of the following pairs is expected to have the larger dispersion forces? $I \mathrm{Br}_{2}$ or I_{2} * molar mass bigger
A) Br_{2} in set I and n-butane in set II
B) Br_{2} in set 1 and isobutane in set II
C) 1_{2} in set I and n-butane in set II
D) I_{2} in set I and isobutane in set II

b surface area
f. The magnitude of the heats of vaporization, fusion and sublimation of a substance reflect the
A) density of the substance.
B) magnitudes of the boiling and melting points of the substance.
C) strength of the covalent bonds between atoms in each molecule of the substance.
(D) strength of the intermolecular forces of the substance.
g. When a substance melts at its normal melting point, the sign of ΔH is \qquad and the sign of $\triangle S$ of this phase change is \qquad
B),$-+\quad$ (C),++
D) - , -
h. Which of the following has the greatest (most negative) lattice energy?
A) CH_{4}
(B) CaCO_{3}
C) NaCl
D) KBr
2. (6) Bromine is one of only two elements that is a liquid at room temperature. Bromine has a heat of vaporization of $30.91 \mathrm{~kJ} / \mathrm{mol}$ and its boiling point is $59^{\circ} \mathrm{C}$. What is the entropy of vaporization for bromine?

$$
\text { (3) } \begin{aligned}
\Delta G=0 & =\Delta H-T \Delta S \\
0 & =30.91-(273+59) \mathrm{k} \cdot \Delta S \\
& \text { (3) } \Delta S=93 \times 10^{-2} \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

3. (10) Use bond strengths given on the cover page to determine the heat of combustion for octane

$$
\begin{aligned}
\Delta H & =\text { bonds broken-bonds formed } \\
& =[14 c-c+36 c-H+250=0]-[320=C+36 H-O] \\
& =[14 \cdot 350+36 \cdot 415+25.498]-[32 \cdot 745+36 \cdot 464]
\end{aligned}
$$

4. (9) The heat of combustion per mole for acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}(g)$, is $-1299.5 \mathrm{~kJ} / \mathrm{mol}$. Given that the enthalpy of formation is $-393.5 \mathrm{~kJ} / \mathrm{mol}$ for $\mathrm{CO}_{2}(\mathrm{~g})$ and $-285.8 \mathrm{~kJ} / \mathrm{mol}$ for $\mathrm{H}_{2} \mathrm{O}(\ell)$, find the enthalpy of formation of $\mathrm{C}_{2} \mathrm{H}_{2}(g)$.

$$
\begin{aligned}
& 2 \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{LO}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& \Delta H^{0}=\sum \Delta H_{f}^{0} \text { prod }-\sum \Delta H_{f}^{0} \frac{\text { reatet }}{t}=-1299.5 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \cdot 2 \mathrm{~mol} \\
& -2599=\left(4 .-393.5 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+2 \cdot 28-\frac{28.8 \mathrm{~kJ}}{\mathrm{~mol}}\right)-x \\
& x=453.4 \mathrm{~kJ} \therefore \Delta H_{f}^{\circ} \mathrm{C}_{2} H_{2}=\frac{4534 \mathrm{~kJ}}{2 \mathrm{~mol}}=226.7 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

5. (9) Calculate the total quantity of heat required to convert 25.0 g of liquid $\mathrm{CCl}_{4}(1)$ from $35.0^{\circ} \mathrm{C}$ to gaseous $\mathrm{CCl}_{4} 76.8^{\circ} \mathrm{C}$ (the normal boiling point for $\left.\mathrm{CCl}_{4}\right)$? The specific heat of $\mathrm{CCl}_{4}(\mathrm{l})$ is $0.857 \mathrm{~J} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right)$ its heat of fusion is $3.27 \mathrm{~kJ} / \mathrm{mol}$ and its heat of vaporization is $29.82 \mathrm{k} / \mathrm{mol}$.
(3) heat liquid $35^{\circ} \rightarrow 76.8^{\circ} \mathrm{s} \cdot \mathrm{m} \cdot \Delta T=0.85 \frac{7 \mathrm{~J}}{9^{\circ} \mathrm{C}} \cdot 25 \mathrm{~g} \cdot 41.8^{\circ} \mathrm{C}=888.25 \mathrm{~J}$
(3) vaporize liquid

$$
\Delta H_{\mathrm{rap}} 4_{\mathrm{mol}}=29.82 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \cdot\left(25 \mathrm{~g} \cdot \frac{.(\mathrm{mol}}{154 \mathrm{~g}}\right)=\frac{4841 \mathrm{~J}}{5729 \mathrm{~J}}
$$

6. (10) A basketball is inflated to a pressure of 1.50 atm in a $20.0^{\circ} \mathrm{C}$ garage. What is the pressure of the basketball outside where the temperature is $-5.00^{\circ} \mathrm{C}$?

$$
\begin{aligned}
\frac{P_{1} Y_{1}}{P_{1} I_{1}}=\frac{P_{2} V_{2}}{A_{2} T_{2}} \quad & \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \\
& 1.50 \mathrm{~atm}=P_{2}
\end{aligned}
$$

7. (11). Rocket fuel, $\mathrm{CH}_{6} \mathrm{~N}_{2}$, has a heat of combustion of $-1.30 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$. When 4.00 g of rocket fuel are combusted in a calorimeter that has a heat capacity of $3.610 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$ when empty, the observed temperature increase is $14.50^{\circ} \mathrm{C}$. Determine the mass of water that was in the calorimeter when the sample was combusted.

$$
\begin{aligned}
& 4 \mathrm{~g} \times \frac{1 \mathrm{md}}{46 \mathrm{~g}} \times 130 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~mol}}=113 \mathrm{~kJ} \text { released } \\
& 113 \mathrm{~kJ}=\frac{\mathrm{mg}}{3.610 \frac{\mathrm{~kJ}}{{ }^{\circ} \mathrm{C}} \cdot 14.50^{\circ} \mathrm{C}}+\frac{4.184710^{-3 \mathrm{~kJ}}}{\mathrm{~g}^{\circ} \mathrm{C}} \cdot \mathrm{~m}_{\mathrm{H}_{2} \mathrm{O}^{\circ}} \cdot 14.50^{\circ} \mathrm{C} \\
& 160.655 \mathrm{~kJ}=.06067 \cdot \mathrm{~m}_{\mathrm{Hz}_{2} \mathrm{O}} \\
& m_{H_{2} \mathrm{O}}=999.79 \mathrm{~g}
\end{aligned}
$$

8. (11) a. Given the heat of formation of NO is $180.7 \mathrm{~kJ} / \mathrm{mol}$, use the following enthal pies of reaction to determine $\Delta \mathrm{H}_{\mathrm{xx}}$ for the formation of NO from dinitrogen oxide and nitrogen dioxide

$$
\begin{aligned}
& 2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} \quad \Delta \mathrm{H}=-113.1 \mathrm{~kJ} \\
& 2 \mathrm{~N}_{2} \mathrm{O} \leftrightarrow 2 \mathrm{~N}_{2}+\mathrm{O}_{2} \quad \Delta \mathrm{H}=163.2 \mathrm{~kJ} \\
& -\mathrm{N}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO} \\
& \Delta H=180.7 \frac{\mathrm{~J}}{\mathrm{~mol}}, 2 \mathrm{~mol} \\
& \frac{1}{2}\left(2 \mathrm{~N}_{2} \mathrm{O} \longrightarrow 2 \mathrm{~N}_{2}+\mathrm{O}_{2}\right) \quad \Delta H=163.2 \mathrm{~kJ}=1 / 2 \\
& \frac{2}{2}\left(2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+{ }^{2} \mathrm{O}_{2}\right) \\
& \Delta H=113.1 \mathrm{NJ} \cdot \frac{1}{2} \\
& \mathrm{~N}_{2} \mathrm{O}+\mathrm{NO}_{2} \rightarrow 3 \mathrm{NO} \quad \Delta \mathrm{H}-499.55 \mathrm{~kJ}
\end{aligned}
$$

