	3 each				2
1. (24) neon a 900 mr	a. In the diagram b toms by gray sphere n Hg, what is the pa A) 90 mm Hg	elow to the to the right, es, and argon atoms by rtial pressure of helium B 180 mm HgC) 270	helium atoms are republack spheres. If the ? 2 mm Hg D) 45	resented by unshaded s total pressure in the cor 0 mm Hg	pheres, ntainer is
b. Whi	ch of the following is A) enthalpy	not a state function? B heat	C) internal energy	D) volume	
c. Whic	ch one of the followir A) NO2	BN2O	iighest rate of effusio C) N ₂ O4	n? D) NO3	
d. At what temperature will sulfur hexafluoride molecules have the same average speed as argon atoms at 20°C?					
293	K A) -22 0°C	B) 73.2°C	C) 381°C	0,799°C	
e.	Which substance in each of the following pairs is expected to have the larger dispersion forces? I $Br_2 \text{ or } I_2 \clubsuit$ molar mass bigger				
(A) Br2 in set I and r B) Br2 in set I and is C I2 in set I and n-I D) I2 in set I and isc	butane in set II sobutane in set II putane in set II II butane in set II	H H H H H-C-C-C-C-H H H H H n-butane	Jourface area H bigger H	—н н н н
 The magnitude of the heats of vaporization, fusion and sublimation of a substance reflect the A) density of the substance. B) magnitudes of the boiling and melting points of the substance. C) strength of the covalent bonds between atoms in each molecule of the substance. D) strength of the intermolecular forces of the substance. 					
g. Whe	en a substance melt ase change is / A) + , -	s at its normal melting p B) - , +	point, the sign of $ riangle H$ i $\bigodot + , +$	s <u>+</u> and the sig D) - , -	n of ∆S of
h. Whic	ch of the following ha A)CH₄	as the greatest (most ne B)CaCO ₃	egative) lattice energy C) NaCl	? D) KBr	
2. (6) E	Bromine is one of onl	y two elements that is a	a liquid at room tempe	rature. Bromine has a h	neat of

ť

2. (6) Bromine is one of only two elements that is a liquid at room temperature. Bromine has a heat of vaporization of 30.91 kJ/mol and its boiling point is 59°C. What is the entropy of vaporization for bromine?

$$\begin{array}{c} 3 \\ 3 \\ 0 = 30.91 - (213+59)k & dS \\ \hline 3 \\ 3 \\ \end{array} \\ \begin{array}{c} \Delta S = 93 \times 10^{-2} kJ \\ \hline molk \\ \end{array}$$

l

3. (10) Use bond strengths given on the cover page to determine the heat of combustion for octane

4. (9) The heat of combustion per mole for acetylene, $C_2H_2(g)$, is -1299.5 kJ/mol. Given that the enthalpy of formation is -393.5 kJ/mol for $C_2(g)$ and -285.8 kJ/mol for $H_2O(I)$, find the enthalpy of formation of $C_2H_2(g)$.

$$\begin{aligned} 2C_{2}H_{2} + \frac{1}{4}O_{2} & \rightarrow & CO_{2} + 2H_{2}O \\ \Delta H^{\circ} = \sum_{a} H_{p}^{\circ} \operatorname{prod} - \sum_{a} H_{p}^{\circ} \operatorname{prod}^{+} = -1299.5 \underbrace{kl}_{nol} \cdot 2 \operatorname{mol}^{-} \\ -2599 = \left(4 \underbrace{4 \underbrace{m_{l}}_{nol} - 393.5 \underbrace{kl}_{mol}}_{mol} + 2 \underbrace{m_{l}}_{nol} - 285.8 \underbrace{kl}_{nol}\right) - X \\ \chi = 453.4 \, \operatorname{kl} : \quad \Delta H_{p}^{\circ} C_{2}H_{2} = \frac{4534 \operatorname{kl}}{2 \operatorname{mol}} = 226.7 \underbrace{kl}_{mol}^{\circ} \end{aligned}$$

3

5. (9) Calculate the total quantity of heat required to convert 25.0 g of liquid CCl₄(*I*) from 35.0°C to gaseous CCl₄ 76.8°C (the normal boiling point for CCl₄)? The specific heat of CCl₄(*I*) is 0.857 J/(g °C) its heat of fusion is 3.27 kJ/mol and its heat of vaporization is 29.82 k/mol.

(3) heat liquid 35°→76.8° 5·m·sT = 0.8571 . 25g. 41.8°C = 888.25J (3) vaponizeliquid strapi #mol = 29.82 KJ. (25g. 1mol) = 4841 J mol. (25g. 1mol) = 4841 J (3) 5729 J

6. (10) A basketball is inflated to a pressure of 1.50 atm in a 20.0°C garage. What is the pressure of the basketball outside where the temperature is -5.00°C?

7. (11). Rocket fuel, CH_6N_2 , has a heat of combustion of -1.30 x 10³ kJ/mol. When 4.00 g of rocket fuel are combusted in a calorimeter that has a heat capacity of 3.610 kJ/°C when empty, the observed temperature increase is 14.50 °C. Determine the mass of water that was in the calorimeter when the sample was combusted.

$$4g \times \frac{1 \mod 130 \times 10^{3} \text{ kJ}}{4 \log } = 113 \text{ kJ released}$$

$$113 \text{ kJ} = 3.610 \text{ kJ} \cdot 14.50^{\circ}\text{C} + 4.184 \text{ kJ} \cdot 0 \text{ m}_{H_20} \cdot 14.50^{\circ}\text{C}$$

$$9^{\circ}\text{C} = 06067 \cdot \text{m}_{H_20} \cdot 14.50^{\circ}\text{C}$$

$$M_{H_20} = 999.79 \text{ g}$$

8. (11) a. Given the heat of formation of NO is 180.7 kJ/mol, use the following enthalpies of reaction to determine ΔH_{rx} for the formation of NO from dinitrogen oxide and nitrogen dioxide

$$2NO + O_2 \rightarrow 2NO_2 \quad \Delta H = -113.1 \text{ kJ}$$

$$2N_2 O \rightarrow 2N_2 + O_2 \qquad \Delta H = 163.2 \text{ kJ}$$

$$N_2 + O_2 \rightarrow 2NO \qquad \Delta H = 180.7 \text{ cd}, \text{ 2mol}$$

$$\frac{1}{2}(2N_2O \rightarrow 2N_2 + O_2) \qquad \Delta H = 163.2 \text{ kJ} - \frac{1}{2}$$

$$\frac{1}{2}(2N_2O \rightarrow 2N_2 + O_2) \qquad \Delta H = 163.2 \text{ kJ} - \frac{1}{2}$$

$$\frac{1}{2}(2N_2O \rightarrow 2N_2 + O_2) \qquad \Delta H = 113.1 \text{ kJ} - \frac{1}{2}$$

$$\frac{1}{2}(2N_2O \rightarrow 2N_2 + O_2) \qquad \Delta H = 113.1 \text{ kJ} - \frac{1}{2}$$

$$N_2O + NO_2 \rightarrow 3NO \qquad \Delta H = 499.55 \text{ k}$$

Bonus (2 pt): Stae the 1st law of Thermodynamics.

4