Azeotropes Revisited

What does it mean that you get "stuck"?

It means that at \(T_{b, \text{min}} \), the percent of \(B \) in the liquid phase equals the \(B \) in the vapor.

So, you're "stuck" since boiling and condensing the vapor, reboiling, etc. doesn't change the \(B \).

Lever Rule

Another way to draw the Figure is:

Going from 1 to 3, we drop the pressure so that the 90% B, 10% A mixture will boil. If we stop at 2 (before all the mixture is boiled), we see again how the vapor is enriched in A, the more volatile component.
Lever Rule continued

We also see (zooming in abit): that \(\ell_2 \) is a little closer to \(V \) on the liquid side than the vapor side.

Can we find a rule that tells us how much is in either phase? Yes! The Lever Rule

Basically, the closer you are to the liquid side, the more liquid phase there will be, but the shorter the \(2-\ell \) line will be relative to \(V-\ell \) line.

Someone thought this was like a teeter-totter, or a lever, where the shorter the distance to the fulcrum the more force it takes to balance the force on the other side:

\[
X_{\text{vap}} (V-\ell \text{ dist.}) = X_{\text{liq}} (2-\ell \text{ dist.})
\]

This lever rule also works on a \(P-V \) diagram:
Maxwell’s construction

\[\Delta \mu = \int \frac{d\mu}{v} \]

If we look at the van der Waals curve:

We know where to put \(l \) and \(v \) such that:

\[\int_v^l d\mu = 0 \]

First let’s change \(d\mu \) into \(\frac{-SdT}{N} + \frac{V dP}{N} \) by Gibbs-Duhem, and cancel \(\Delta U \) because \(T \) is constant.

Then put point \(M \) on the line connecting \(l \) and \(v \). Now:

\[\int_v^m \frac{V}{N} dP + \int_m^v \frac{V}{N} dP = 0 \]

This only happens if \(|\text{Area I}| = |\text{Area II}| \) since areas \(I + II \) have opposite signs.
Phase transitions

First order phase transitions are what we've looked at so far, (melting, boiling, etc.)

They've characterized by a discontinuity in the first derivative of \(\mu \)

We saw how \(\mu \) changes with phase:

The first derivatives at \(m + b \) are discontinuous.

Other transitions are discontinuous for higher derivatives of \(\mu \).

These are called 2\text{nd} order phase transitions or simply "continuous" (as opposed to 1\text{st} order ones which are called "discontinuous").
Legendre Transforms

Pretend that the internal energy, U, is only a function of V (for an adiabatic, closed system this is true), then we graph:

$U(V)$

Intercept of tangent which changes as the slope, $-P$, changes, so we'll call this intercept $b(-P)$

Internal energy drops as the volume increases, system is doing work on the surroundings.

Question: Can we reconstruct $U(V)$ from a knowledge of $\frac{du}{dv}$?
Answer: No, since the same set of slopes fits any $f(V) = U(V) + c$.

So, we need to use the set of intercepts, $b(-P)$, to specify $U(V)$ given a knowledge of $\frac{du}{dv}$:

$U(V) = V\left(\frac{du}{dv}\right) + b(-P) \quad \text{like } y = mx + b$

Rename this function H:

$H(P) = U(V) + VP = b(-P) \frac{du}{dv} = -P$

This is the Legendre transform from U to H, i.e., how we define H.

H can be thought of as a function that depends on the slope of U in the V dimension related to the intercept.
The bottom line in Legendre transforms is that, by replacing \(V \) with \(\frac{dU}{dV} \), some information about \(U(V) \) is lost. Recovering that information involves taking \(\frac{dU}{dV} \) times \(V \) and adding in a new function, the slope variable.

The new function is interesting in its own right, since it depends on \(\frac{dU}{dV} \) and not on \(V \). In this case, \(\frac{dU}{dV} = -P \) so the new function depends on \(P \).

Now we write:

\[
\begin{align*}
U &= TS - PV + \sum_i \mu_i N_i \\
H &= TS + \sum_i \mu_i N_i \\
F &= -PV + \sum_i \mu_i N_i \\
G &= \sum_i \mu_i N_i \\
\end{align*}
\]

So, if \(G \) only depends on \(\mu_i \) and \(N_i \), why does:

\[
dG = -SDT + VdP + \sum_i \mu_i dN_i \quad ? \tag{1}
\]

Answer: \(dG = \sum_i \mu_i dN_i + \sum_i N_i d\mu_i \) but by Gibbs-Duhem:

\[
\sum_i N_i d\mu_i = -SDT + VdP \quad \tag{3}
\]

Substituting \(2 \) into \(3 \) gives \(1 \).