Thermochemistry

The study of energy changes that occur during chemical :

- ightharpoonup at constant volume $\Delta U = q_V$ no _____
- ightharpoonup at constant pressure $\Delta H = q_P$ only ____ work

For practical reasons most measurements are made at constant _____, so thermochemistry mostly deals with ΔH .

$$\Delta H_{\text{reaction}} = \sum_{\text{products}} H - \sum_{\text{reactants}} H$$

If $\Delta H > 0$ the reaction is ______.

If $\Delta H < 0$ the reaction is ______.

For comparison purposes we need to refer ΔH to the same ____ and ____ . To define a standard reaction enthalpy each component of the reaction must be in its ____ _ - the most stable form at 1 bar pressure and (usually) 25°C.

Reaction Enthalpy 1

Hess's Law

The standard enthalpy change in any reaction can be expressed as the _____ of the standard enthalpy changes, at the same temperature, of a _____ of reactions into which the overall reaction can be formally divided.

Combine chemical equations as if _____ equations, e.g.

$$\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3$$

Standard Reaction Enthalpy

Reaction Enthalpy 2

Standard (molar) enthalpy of _____ $\Delta H_{\rm f}^{\rm o} \equiv \Delta_{\rm f} H^{\rm o}$

Heat of formation of a substance from its elements, all substances being in their standard state.

By definition, for all _____ $\Delta H_{\rm f}^{\rm o} = 0$

Enthalpy of _____

$$\Delta H_c^{\rm o} \equiv \Delta_c H^{\rm o}$$

 ΔH° for total oxidation of a substance

e.g.
$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$
 $\Delta_cH^\circ = -2808 \text{ kJ mol}^{-1}$

$$\Delta_{\rm c} H^{\rm o} = -2808 \text{ kJ mol}^{-1}$$

Enthalpy of _____

 ΔH° when an unsaturated organic compound becomes fully saturated

e.g.
$$C_6H_6 + 3H_2 \rightarrow C_6H_{12}$$

$$\Delta H^{\circ} = -246 \text{ kJ mol}^{-1}$$

Enthalpy of _____ = Bond dissociation enthalpy

 ΔH° for the dissociation of a molecule into its constituent gaseous atoms

e.g.
$$C_2H_6(g) \to 2C(g) + 6H(g)$$

$$\Delta H^{\circ} = 2883 \text{ kJ mol}^{-1}$$

Bond ____ = single bond enthalpy

An average value taken from a series of compounds and often combined for a _____ estimate

e.g.
$$\Delta H^{\circ}(C_2H_6) = \Delta H^{\circ}(C-C) + 6 \Delta H^{\circ}(C-H)$$

Temperature Dependence of ΔH°

The temperature dependence of reaction enthalpies can be expressed in terms of the *T* dependence of the enthalpies of the reaction :

$$H(T_2) = H(T_1) + \int_{T_1}^{T_2} \underline{\hspace{1cm}} dT$$

$$\therefore \Delta H(T_2) = \Delta H(T_1) + \int_{T_1}^{T_2} \underline{\hspace{1cm}} C_p dT$$
where $\Delta C_p = \sum_{\text{products}} C_p - \sum_{\text{reactants}} C_p$

This general phenomenon is known as Kirchoff's Law.

assuming that the C_p values are _____ independent.

Reactions at Constant Volume

$$\Delta H_{\rm r} = \Delta U_{\rm r} + (PV)_{\rm products} - (PV)_{\rm reactants}$$

For _____ and $\Delta(PV) \approx 0$, so $\Delta H \approx \Delta U$ liquids $\Delta(PV) = \Delta n_{\rm gas} RT$,

For ideal gases so $\Delta H \approx \Delta U + \Delta n_{\text{gas}} RT$

e.g.
$$C_3H_6(g) + \frac{9}{2}O_2(g) \to 3CO_2(g) + 3H_2O(1)$$

$$\Delta H_r = \Delta U_r + (-__)RT$$

The relationship between _____ and ΔU is particularly important when relating thermochemical enthalpies (ΔH) to molecular properties ($U_{molecular}$),

e.g. for a single bond energy $\Delta U = \Delta H - RT$ as seen in the case of $O_2(g) \rightarrow 2O(g)$.

In practice, _____ is usually so much smaller than ΔH that it is often ignored.

Enthalpies of Ions in Solution

Enthalpy of _____ ΔH° for solution of a substance in a stated amount of solvent Enthalpy of _____ ΔH° for dilution of a solution to a lower concentration Enthalpy of solution to _____ dilution ΔH°_{soln} for an infinite amount of solvent The enthalpy of formation for a species in _____ can be found by combining ΔH°_{soln} with the ΔH°_{f} of the ____ species: $\frac{1}{2}H_{2}(g) + \frac{1}{2}Cl_{2}(g) \rightarrow HCl(g) \qquad \Delta H^{\circ}_{f} = -92.31 \text{ kJ mol}^{-1}$ $HCl(g) \rightarrow HCl(aq) \qquad \Delta H^{\circ}_{soln} = -75.14 \text{ kJ mol}^{-1}$ $\frac{1}{2}H_{2}(g) + \frac{1}{2}Cl_{2}(g) \rightarrow HCl(aq) \qquad \Delta H^{\circ}_{f} (ion) = \Delta H^{\circ}_{f} + \Delta H^{\circ}_{soln}$ $= -167.45 \text{ kJ mol}^{-1}$

 $\Delta H_{\rm f}^{\rm o}$ for individual ions in solution can only be found if one is arbitrarily fixed. By convention this is ______.

$$\frac{1}{2}H_{2}(g) \rightarrow H^{+}(aq) + e^{-} \qquad \Delta H_{f}^{\circ} \left(H_{aq}^{+}\right) = 0$$

$$\Delta H_{f}^{\circ} \left(Cl_{aq}^{-}\right) = \Delta H_{f}^{\circ} \left(HCl_{aq}\right) - \Delta H_{f}^{\circ} \left(H_{aq}^{+}\right) = \Delta H_{f}^{\circ} \left(HCl_{aq}\right)$$

The _____ state for a substance in solution (not just ions) is a concentration of 1 mole solute in 1 kg solution (1 molal).

Enthalpy of Formation of an Ionic Solid

Consider individual steps in the formation of NaCl.

1.
$$\Delta H_{\text{subl}}^{\circ} \left(\text{Na} \right)$$
2.
$$\Delta H^{\circ} = \underline{\quad} \left(\text{Na} \right) + \underline{\quad}$$
3.
$$\underline{\quad} \underline{\quad} \underline{\quad} \Delta H^{\circ} \left(\text{Cl-Cl} \right)$$
4.
$$\Delta H^{\circ} = -\underline{\quad} \left(\text{Cl} \right) - RT$$
5.
$$\underline{\quad} \text{Na(s)} + \frac{1}{2}\text{Cl}_{2}(g) \rightarrow \text{NaCl(aq)} \qquad \Delta H_{\text{sol}}^{\circ} \left(\text{Na}^{+} \right) + \Delta H_{\text{sol}}^{\circ} \left(\text{Cl}^{-} \right)$$

$$\Delta H_{\text{f}}^{\circ} \left(\text{NaCl}_{\text{aq}} \right) = \Delta H_{\text{subl}}^{\circ} \left(\text{Na} \right) + I(\text{Na}) + \frac{1}{2}\Delta H^{\circ} \left(\text{Cl-Cl} \right)$$

$$-E_{\text{A}} \left(\text{Cl} \right) + \Delta H_{\text{sol}}^{\circ} \left(\text{Na}^{+} \right) + \Delta H_{\text{sol}}^{\circ} \left(\text{Cl}^{-} \right)$$

Step 5 could be creation of solid NaCl instead of solution

5'.
$$\Delta H_{\text{lattice}}^{\text{o}} \left(\text{NaCl} \right)$$

leading us to the enthalpy of formation of solid NaCl:

Na(s) +
$${}^{1}_{2}\text{Cl}_{2}(g) \rightarrow \text{NaCl(s)}$$

$$\Delta H_{f}^{o} \left(\text{NaCl}_{s} \right) = \Delta H_{\text{subl}}^{o} \left(\text{Na} \right) + I(\text{Na}) + \frac{1}{2}\Delta H^{o} \left(\text{Cl-Cl} \right)$$

$$-E_{A} \left(\text{Cl} \right) + \Delta H_{\text{lattice}}^{o} \left(\text{NaCl} \right)$$

A _____ Cycle for NaCl

Enthalpy changes can also be expressed in a diagram, e.g.

Since *H* is a state variable, the sum of enthalpy changes around the cycle must be ______. Consequently, if all but one of the enthalpy changes is known, it can be readily calculated.

This is equivalent to using _____ Law to sum reaction steps.