Heat Engines

A heat engine is a system capable of transforming heat into _____ by some cyclic process.

We will see that an _____ cyclic process can not produce net work. (2nd Law of Thermodynamics)

The _____ of a heat engine is defined as the ratio of the work produced to the heat ____ :

$$\varepsilon = \frac{w}{q_{\rm H}} = \frac{q_{\rm H} - q_{\rm L}}{q_{\rm H}} = \boxed{$$

high temperature reservoir @ T_H

$$w_{\text{out}} = q_{\text{H}} - q_{\text{L}}$$

A heat _____ is a heat engine in reverse. Work is needed to transfer heat from a lower to a higher temperature reservoir.

The Carnot Cycle

$$\varepsilon = \frac{-}{q_{\rm in}} = \frac{nR(T_{\rm H} - T_{\rm L})\ln(V_{\rm A}/V_{\rm B})}{-} = 1 - \frac{T_{\rm L}}{T_{\rm H}}$$

$$\varepsilon = \frac{(T_{\rm H} - T_{\rm L})}{T_{\rm H}}$$
for best efficiency,
$$\frac{T_{\rm H}}{T_{\rm L}}$$

Changes in the Carnot Cycle

expansion $(1 \rightarrow 2)$:

$$\Delta U = 0 \implies -w = q > 0$$
 Define Entropy $\Delta S = \frac{q}{T}$: $\Delta S > 0$

 $_$ compression (4 ← 3): ΔS < 0

steps (2
$$\rightarrow$$
 3 and 1 \leftarrow 4): $q = 0 \implies \Delta S = 0$

Spontaneous Change

(So, why do we need entropy, anyway?)

The direction of spontaneous change is that which

- leads to _____ dispersal of the total energy
- moves from a state of low intrinsic probability towards one of _____ probability.

Work is needed to reverse a spontaneous process.

We need a quantity – _____ – to describe energy dispersal, i.e. the probability of a state.

Spontaneous processes are _____.

They "_____ " entropy

Reversible processes do not generate entropy – but they may _____ it from one part of the universe to another.

Entropy 1

- Entropy is a _____ variable (property) which determines if a state is accessible from another by a _____ change.
- Entropy is a measure of chaotic dispersal of energy.
- The natural tendency of spontaneous change is towards states of higher entropy.
- There are both thermodynamic (how much _____ is produced?) and statistical definitions (how _____ is a state?). They both become equivalent when statistics is applied to a _____ number of molecules.

Consider a falling weight which drives a generator and thus results in heat *q* being added to the reservoir (the surroundings).

Define a _____ variable S

$$dS(\text{surr}) = -\delta q / T$$

Then use stored energy to restore the weight to its original height. The reservoir gives up $\delta q_{\rm rev}$ to the system, and there is no overall change in the _____ .

$$dS(\text{sys}) = \underline{\qquad} dS(\text{surr}) = \frac{\delta q_{\text{rev}}}{T}$$

this would only work for infinitesimal changes

Entropy 2

In general,
$$dS(\text{sys}) + dS(\text{surr}) \ge 0$$

 $dS(\text{sys}) \ge -dS(\text{surr})$

Equality for reversible processes only

or, for the _____,
$$dS \geqslant \frac{\delta q}{T}$$
 _____ inequality

$$dS \geqslant \frac{\delta q}{T}$$

For an _____ system,
$$q = 0$$
 hence $\Delta S \geqslant 0$

Isothermal Processes
$$\Delta S = q_{rev}/T$$

$$\Delta S = q_{\rm rev} / T$$

e.g.
$$\Delta S \text{ (fusion)} = \frac{\Delta H_{\text{fus}}}{T_{\text{m}}} \qquad \Delta S \text{ (vap)} = \frac{\Delta H_{\text{vap}}}{T_{\text{b}}}$$

$$\Delta S(\text{vap}) = \frac{\Delta H_{\text{vap}}}{T_{\text{b}}}$$

$$_$$
Rule: $\Delta S(\text{vap}) \approx _$ J K⁻¹ mol⁻¹

Can be used to estimate _____ if T_b is known. Not good for _____ liquids.

Temperature Variation $\delta q_{\rm rev} = \underline{\hspace{1cm}} dT$

$$\left(\Delta S\right)_{V} = \int_{T_{1}}^{T_{2}} \frac{C_{V}}{T} dT$$

and
$$(\Delta S)_P = \int_{T_1}^{T_2} \frac{C_P}{T} dT$$

____ Entropy

$$S(T) = S(0) + \int_0^T \frac{C_P}{T} dT$$

Entropy 3 (Statistical Mechanics)

Entropy depends on Probability.

Consider the number of ways Ω of arranging n molecules between two sides (A and B) of a container.

The probability \mathcal{P}_{A} that all molecules are on side A depends on the _____ of Ω to the total number of arrangements.

A B

$$\Omega_{\rm A} = 1$$
 $\Omega_{\rm tot} = 2$ $\mathcal{P}_{\rm A} = \frac{1}{2}$

$$\mathcal{P}_{A} = \frac{1}{2}$$

$$\Omega_{\rm A} = 1$$
 $\Omega_{\rm tot} = 4$ $\mathcal{P}_{\rm A} = \frac{1}{4}$

$$\mathcal{P}_{A} = \frac{1}{4}$$

$$\Omega_{\rm A} = 1$$
 $\Omega_{\rm tot} = 16$ $\mathcal{P}_{\rm A} = \frac{1}{16}$

$$\mathcal{P}_{A} = \frac{1}{16}$$

$$\Omega_{A} = 1$$
 $\Omega_{tot} = \underline{\hspace{1cm}} \mathcal{P}_{A} = \underline{\hspace{1cm}}$

State A becomes less and less probable as *n* increases. Conversely, the probability of the less ordered, roughly evenly distributed states, increases.

Since entropy is a measure of _____, it follows that S depends on Ω .

Boltzmann equation S = k____ Ω

Since
$$\mathcal{P}(x \text{ and } y) = \mathcal{P}_x \underline{\hspace{1cm}} \mathcal{P}_y$$
, $\ln \mathcal{P}_{x+y} = \ln \mathcal{P}_x + \ln \mathcal{P}_y$

The ____ Law of Thermodynamics "An _____ cyclic process in which there is a net conversion of ____ into work is impossible." "No process is possible in which the sole result is the absorption of heat from a reservoir and its conversion into work." It is possible to convert _____ work into heat! "It is impossible for heat to be transformed from a body at a lower temperature to one at a higher temperature unless is done." "The entropy of an isolated system _____ during any natural process." The universe is an isolated system. $\Delta S(\text{sys}) < 0$ is allowed provided $\Delta S(\text{sys}) + \Delta S(\text{surr}) > 0$ "All reversible _____ cycles operating between the same two temperatures have the same thermodynamic efficiency." "There is a state function called entropy S that can be calculated from $_S = \delta q_{rev}/T$. The change in entropy in any process is given by $dS \ge \delta q/T$, where the inequality refers to a spontaneous (irreversible) process." The 1st Law uses *U* to identify _____ changes of state. The 2nd Law uses S to identify _____ changes among the permissible ones.