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The thermodynamic cuhoctahedron is a three dimensional 
generalization of the thermodynamic square which is amne- 
monic device for generating thermodynamic equations, par- 
tirularly rhe hlaxwell relations. Speciiirntions for the ron- 
struction of a thermodynamic cuhoctahedron are given in this . 
paper. 

In 1929, Professor Max Born delivered a lecture on Max- 
well's relations in which he used a diagram like the one in 
Figure 1.' F. 0. Koenig has elaborated on Born's idea and has 
provided geometrizations of other thermodynamic relation- 
s h i p ~ . ~  Koenig has even used a thermodynamic octahedron 
as a geometrical element hut in a way very different from the 
way the thermodynamic cuhoctahedron is used in this paper.= 

The "thermodvnamic sauare" contains a ereat deal of in- - 
formation: 

1) The four fundamental thermodvnamical ~otentials. U. 
A, H, and G are exhibited at  the edges of the &are andard 
flanked at  the corners by the thermodynamic parameters 
upon which they depend 

U = U(S,V) 
A = A( T,V) 
H = H(S,P) 
G = G(TQ) 

2) The two arrows provide plus and minus signs for the 
differential form of the first law. If an arrow points away from 
a thermodynamic parameter, then the differential of that 
parameter has a +sign. If the arrow points toward a thermo- 
dynamic parameter, then the differential of that parameter 
has a - sign. This convention gives 

dU = TdS - PdV 
dA = SdT - PdV 
dH = TdS + VdP 
dG = SdT + VdP 

3) The Maxwell relations can he ohtained. They depend 
only upon the parameters at  the corners of the square, and the 
orientation of the arrows. Figure 2 depicts two situations 
which lead to the Maxwell's relations 

The first relation has the same sign on hoth sides of the 
equation hecause the arrow3 in Figure 2 are oriented sym- 
metricullv. The second relation has o~oosite siens on the tw,, . . - 
sides of the equation because the arrows are oriented asym- 
metrically in the corresponding diagram of Figure 2. 

In order to include the mole number, N,  the chemical po- 
tential,3 p, and the grand canonical potential, Q = Q(T, V, w), 
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Figure 1. Thermcdynamic square. 

Figure 2. Maxwell relation diagrams. 

additional thermodynamic squares are introduced as is de- 
picted in Figure 3. 

From the thermodynamic squares in Figure 3, relevant 
equations for the grand canonical potential are ohtained. 
Using hoth squares in Figure 3 and the same sign convention 
as was used in Figure 1, gives 

dQ = SdT - PdV - Ndp 

Note that one square in Figure 3 gives dR = -SdT - Ndw 
while the other square gives dR = -PdV - Ndp. Conse- 
quently, in order to get the full, three parameter dependence 
for Q or any of the other thermodynamic potentials, two 
squares must he used simultaneously. The squares in Figure 
3 also provide more Maxwell relations 
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Figure 3. Additional thermodynamic squares 

The additional thermodynamic potentials, U', U", , U"', 
which appear in Figure 3 are defined by the Legendre trans- 
formations of U given by 

U'I  U - N p  
U" e U + PV - Np 
U"' I U - TS + PV - Np I 0 

The first law in differential form, d U  = TdS - PdV + pdN, 
and U"' lead to the Gihhs-Duhem relation: S d T  - VdP + 
Ndw = 0. U"' -- 0 because of the Euler relation for first-order 
homogenous functions which implies that: U = T S  - PV + 
Nw. 

All of the preceding results and kindred others can be rep- 
resented simultaneously osing the surface of a cuboctahedron, 
which is one of the 13 regular Archimedean solids, and which 
is comprised of six equal squares and eight equal, equilateral 
triangles. The cuboctahedron is the solid one gets by succes- 
sively truncating both a cube and an octahedron until the two 
truncated solids become identical. Figure 4 depicts the cu- - 
boctahedron. 

The six thermodvnamic ~arameters,  S, T, V, P, N, and w 
are placed on the squares, and the eight thermodynamic po- 
tentials, U, A, H, G, a, U', U", and U"' are placed on the tri- 
angles. Any particular triangle shares an edge with three 
squares, and any particular square shares an edge with four 
triangles. It is possible to fill the squares with parameters, and 
the triangles with potentials, so that the three squares adja- 
cent to the triangle containing a particular potential contain 
together all three parameters upon which the potential 
functionally depends. The cuboctahedron tells at a glance that 

The effect of arrows, as used in thermodynamic squares, can 
also he achieved with the cuboctahedron by placing a cross, 
X, with the parameters T, V ,  and w and by placing a dot, a,  

with the parameters S, P, and N. The cross denotes the arrow 
head while the dot denotes the arrow shaft. The rules for plus 
and minussigns are rhen the same as for  the thermodynamics 
squares. All hlawrll relations are readily wri~ren and the fill1 

dependence is manifested. For example 

dU = TdS - PdV + pdN 
dG = -SdT + VdP + pdN 

In order to read off Maxwell relations such as in the examples 
above, the cuboctahedron should be held in such a position 

Figure 4. Cuboctahedron. 

Figure 5. Cut and fold thermodynamic cuboctahedron 

that the four thermodynamic potentials of interest are visible. 
The associated four parameters will then he found on the 
squares which connect the visible potentials. A fifth square 
will connect all four triangles containing the potentials of in- 
terest and it provides the additional fixed parameter; or its 
conjugate parameter which is on the opposite square face of 
the cuboctahedron can he taken as fixed. Therefore 

Figure 5 will be helpful in constructing a thermodynamic 
cuboctahedron out of stiff paper or thin cardboard. Only a 
straight edge and a compass are necessary for the construction 
because every edge is of the same length as every other edge 
and onlv sauares and eauilateral triangles occur in the con- . . - 
struction. 

Students, in the thermodynamics class which I taught 
during the Winter quarter of 1974, did very well in the solution 
to problems requiring thermodynamic formulas, by using their 
cuboctahedra as compact information sources. The mere act 
of construction brought to bear a healthy attitude towards 
Maxwell relations and Legendre transformed potentials which 
would otherwise probably have been lacking as has been the 
case with students I have taught who did not construct cu- 
hoctahedra. 
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