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0. Introduction

The notion of a matrix factorization was introduced by Eisenbud [5] in his study 
of bounded (periodic) free resolutions over commutative complete intersections. Since 
then, matrix factorizations have appeared in a number of applications, including string 
theory, singularity categories, representation theory of Cohen–Macaulay modules, among 
others. The goal of the present article is to extend the notion of matrix factorization to 
the broader context of noncommutative algebras.

One motivation of such a study comes from attempting to understand the notion of 
a complete intersection in a noncommutative context. A perspective that one may take 
is that a graded noncommutative complete intersection is a quotient of a free algebra 
whose Hilbert series is ‘as small as possible’. This is the perspective of Etingof–Ginzburg 
[6] which builds off of work of Anick [1]. Here, they show that Anick’s original definition 
is connected to several other conditions, some of which go back to results of Golod–
Shafarevich [8,9]. One drawback of this approach however, is that Artin–Schelter regular 
(hereafter abbreviated AS-regular) algebras of global dimension greater than 2 are not 
noncommutative complete intersections using this definition.

Another perspective is to ask that the Ext algebra of a graded algebra A behaves 
in a manner similar to that of a commutative graded (or local) complete intersection. 
This means that one seeks conditions that force Ext∗A(k, k) be a noetherian k-algebra, 
or have finite Gelfand–Kirillov (GK) dimension. This is the perspective of the work of 
Kirkman–Kuzmanovich–Zhang [14]; they prove that if A is the quotient of an AS-regular 
algebra by a regular sequence of normalizing elements, then Ext∗A(k, k) has finite GK 
dimension. Our main goal is to better understand the minimal free resolutions of modules 
over quotients of AS-regular by a single regular normal element.

To state our results below, we assume that A is a connected, N-graded, locally finite 
dimensional algebra over a field k. We also fix a homogeneous normal regular element 
f ∈ A+ =

⊕
n>0 An and set B = A/(f). The regularity and normality of f provide 

us with a graded automorphism σ of A which we incorporate into the definition of 
matrix factorization. The use of σ to modify ring actions is the reason for our “twisted” 
terminology; see Definition 2.2.

Our first main result shows that just as in the commutative case, (reduced) twisted 
matrix factorizations give rise to (minimal) resolutions.

Theorem A. (See Propositions 2.4, 2.9, 2.12.) A twisted left matrix factorization (ϕ, τ) of 
f gives rise to a complex Ω(ϕ, τ) of free left B-modules which is a graded free resolution 
of cokerϕ as a left B-module. If the twisted matrix factorization (ϕ, τ) is reduced (see 
Definition 2.7), then the graded free resolution is minimal. If the order of σ is finite, 
then the resolution is periodic of period at most twice the order of σ.

1 Ellen Kirkman was partially supported by the Simons Foundation Grant #208314.
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As in the commutative case, one can consider the category of all twisted matrix 
factorizations of f over a ring A, which we call TMFA(f).

There is another context where twisting via an automorphism arises in the study of 
graded algebras: the Zhang twist [19]. The following theorem relates the category of 
twisted matrix factorizations of f over A to those over the Zhang twist of A with respect 
to a compatible twisting system ζ (which we denote Aζ).

Theorem B. (See Theorem 3.6.) Let ζ = {σn | n ∈ Z} be the twisting system associated 
with the normalizing automorphism σ. Then the categories TMFA(f) and TMFAζ (f)
are equivalent.

This result is somewhat surprising. If f is central in the Zhang twist Aζ , then the 
complexes associated to matrix factorizations in TMFAζ (f) will be periodic of period 
at most two, while those coming from matrix factorizations in TMFA(f) could have a 
longer period, depending on the order of σ. It should be noted that f is not necessarily 
central in the Zhang twist. This peculiarity is illustrated in Example 6.2.

A major result in [5, Theorem 5.2] that drives many of the applications of matrix 
factorizations is that, under appropriate hypotheses, every minimal graded free resolu-
tion is eventually given by a reduced matrix factorization. We extend this result in the 
following:

Theorem C. (See Theorem 4.2.) Let A be a connected graded algebra of global dimension 
n < ∞, f ∈ A+ be a homogeneous normal regular element and let B = A/(f). Then 
for every finitely generated graded left B-module M , the (n +1)st left syzygy of M is the 
cokernel of some reduced twisted left matrix factorization of f over A.

There is a suitable notion of homotopy in the category TMFA(f), and we denote 
the associated homotopy category hTMFA(f). Following Orlov’s lead [17], we provide a 
triangulated structure on hTMFA(f) and prove the following Theorem.

Theorem D. (See Theorem 5.8.) Let A be a left noetherian Artin-Schelter regular algebra, 
and let f ∈ A+ be a homogeneous normal regular element. Then the homotopy category of 
twisted matrix factorizations of f over A is equivalent to the bounded singularity category 
of B.

It should be noted that since the minimal resolution that comes from a twisted matrix 
factorization need not be periodic, some minor adjustments to Orlov’s original argument 
must be made.

The paper is organized as follows: Section 1 covers preliminaries, as well as sets up no-
tation regarding various twists that will be used for the remainder of the paper. Section 2
covers the definition of matrix factorization, as well as the proof of Theorem A. Section 3
contains the background regarding the Zhang functor, as well as the proof of Theorem B. 
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Section 4 includes the precise statement and proof of Theorem C. Section 5 contains the 
categorical considerations for Theorem D, and Section 6 contains some examples.

1. Preliminaries

The main results in this paper concern graded modules over graded rings, hence 
we work exclusively in that context. Let A be an N-graded algebra over a field k. We 
assume A is locally finite-dimensional: dimk Ai < ∞ for all i ∈ N, and connected: A0 = k. 
Throughout, we work in the category A-GrMod of graded left A-modules with degree 
zero morphisms, though our definitions and results have obvious analogs for graded 
right modules. Throughout, ‘graded k-algebra’ means ‘connected graded locally finite 
algebra over a field k’. It is well known that in this category, finitely generated projective 
A-modules are free. Rather than use the language of projective modules, we prefer to 
state our results using free modules.

Let σ be a degree zero graded algebra automorphism of A. For M ∈ A-GrMod, we 
write σM for the graded left A-module with σM = M as graded abelian groups and 
left A-action a ·m = σ(a)m. If ϕ : M → N is a degree zero homomorphism of graded 
left A-modules, σϕ = ϕ : σM → σN is also a graded module homomorphism. It is 
straightforward to check that the functor σ(−) is an autoequivalence of A-GrMod, and 
that M is free if and only if σM is free.

For any n ∈ Z and M ∈ A-GrMod, we write M(n) for the shifted module whose 
degree i component is M(n)i = Mi+n. The degree shift functor M �→ M(n) is also 
easily seen to be an autoequivalence of A-GrMod which commutes with σ(−); that is, 
σ(M(n)) = (σM)(n).

Let f ∈ Ad be a normal, regular homogeneous element of degree d, and let σ : A → A

be the graded automorphism of A determined by the equation af = fσ(a) for each 
a ∈ A. We call σ the normalizing automorphism of f and say f is normalized by σ. Note 
that f is normalized by σ if and only if left multiplication by f is a graded left module 
homomorphism λM

f : σM(−d) → M for all M . Moreover, λN
f ◦ σϕ(−d) = ϕ ◦ λM

f for any 
graded homomorphism ϕ : M → N .

In this paper we are especially interested in periodic resolutions. We say a complex 
of degree zero morphisms P : · · · → P2 → P1 → P0 of graded left A-modules is periodic 
of period p if p is the smallest positive integer such that there exists an integer n and a 
morphism of complexes t : P(n) → P of (homological) degree −p where t : Pi+p(n) → Pi

is an isomorphism for all i ≥ 0. Note the shift (n) is applied to the internal grading of 
each free module in the complex. If such an integer p exists, we say P is periodic. If there 
exists an integer m ≥ 0 such that the truncated complex · · · → Pm+2 → Pm+1 → Pm is 
periodic, we say P is periodic after m steps.

Free modules over noncommutative rings need not have a well-defined notion of rank. 
Even among those that do, not all satisfy the rank conditions (a) f : An → Am an 
epimorphism ⇒ n ≥ m and (b) f : An → Am a monomorphism ⇒ n ≤ m (though 
(b) implies (a), see [15, Proposition 1.22]). However, since we assume A is locally finite 
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dimensional and morphisms preserve degree, the graded version of (b) clearly holds for 
graded free A-modules. Thus rank is well-defined for graded free A-modules. We adopt 
the usual convention that the zero module is free on the empty set.

We record a few straightforward facts about periodic complexes needed later.

Lemma 1.1. Let P be a complex of graded free left A-modules.

(1) If P is periodic and there exists an integer N > 0 such that rank Pj = rank PN for 
all j ≥ N , then rank Pj = rank P0 for all j ≥ 0.

(2) Let P̃ be a complex of graded left A-modules which is periodic of period p. If there 
exist an integer n and an isomorphism of complexes t : P̃(n) → P, then P is also 
periodic of period p.

We say a resolution (P•, d•) is minimal if im di ⊂ A+Pi−1 for all i, where A+ =⊕
n>0 An. Recall that every bounded below, graded module over a connected, N-graded, 

locally finite-dimensional k-algebra has a minimal graded free resolution. This resolution 
is unique up to non-unique isomorphism of complexes (see, for example, [18, Proposition 
1.4.2]).

Lemma 1.2. Let σ be a degree zero graded automorphism of A. Let P be a minimal 
graded free resolution of a bounded below, graded left A-module M . If σM ∼= M as graded 
modules, then the complexes σP and P are isomorphic.

Proof. First note that σP is a minimal graded free resolution of σM . Since σM ∼= M , 
the comparison theorem shows that σP and P are isomorphic. �
2. Twisted matrix factorizations

The key to our study is the notion of a twisted matrix factorization. As will be evident, 
the notion can in fact be defined over any ring containing a normal, regular element. 
Indeed some results, such as Proposition 2.4, are readily seen to hold in this generality 
by forgetting the grading.

Throughout this section, we let A be a connected, N-graded, locally finite-dimensional 
algebra over a field k. Let f ∈ Ad be a normal, regular homogeneous element of degree 
d and let σ be its degree zero normalizing automorphism. Let B be the quotient alge-
bra A/(f). We will use ( ) to denote quotients modulo (f), and will denote by σ the 
degree zero automorphism of B induced by σ.

Definition 2.1. Let A, f , d and σ be as above. We define the functor twM to be the 
composite M �→ σM(−d). We will use tw

−1
M to denote its inverse M �→ σ−1

M(d).

Before going further, we address a potential source of confusion. Let M be a left 
B-module (and hence a left A-module). We will write twM to mean A(σM(−d)) and 
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twM to mean B(σM(−d)). The reader should note that twM ∼= B⊗A (twM) and likewise 

A(twM) ∼= twM . We denote repeated application of tw(−) by tw2(−), tw3(−), etc. and 
likewise for tw(−).

We are now in position to define the main object of study in this paper.

Definition 2.2. A twisted left matrix factorization of f over A is an ordered pair of maps 
of finitely generated graded free left A-modules (ϕ : F → G, τ : twG → F ) such that 
ϕτ = λG

f and τ twϕ = λF
f , where twϕ is the induced map twϕ : twF → twG. Note that twG

is free whenever G is.

Remark 2.3. The homomorphisms twϕ : twF → twG and ϕ : F → G are identical on the 
underlying abelian groups. If we fix bases for F and G, and keep the same bases for twF
and twG, the matrices of ϕ and twϕ with respect to these bases are different. The matrix 
of twϕ is obtained by applying σ−1 to each entry of the matrix of ϕ.

Our definition is a generalization of the familiar notion from commutative algebra 
that incorporates the automorphism σ. A more general version of our definition in the 
context of an abelian category is given in Ballard et al. [3, Definition 2.3].

Note that if any of (ϕ, τ), (twϕ, twτ) or (τ, twϕ) is a twisted matrix factorization, then 
the other two are as well. It is easy to see that if (ϕ, τ) is a twisted matrix factorization, 
then both ϕ and τ are injective since f is regular, and hence rank F = rank G.

We call the twisted factorization (ϕ, τ) where ϕ = τ : 0 → 0 the irrelevant factoriza-
tion. We call a twisted factorization (ϕ, τ) trivial if ϕ = λA

f or τ = λA
f .

Paralleling the commutative case, twisted matrix factorizations provide a general con-
struction of resolutions.

Proposition 2.4. Let (ϕ : F → G, τ : twG → F ) be a twisted left matrix factorization of a 
regular element f ∈ A with normalizing automorphism σ. Then the complex

Ω(ϕ, τ) : · · · → tw2
G

twτ−−→ twF
twϕ−−→ twG

τ−→ F
ϕ−→ G

is a resolution of M = coker ϕ by free left B-modules.

The proof of Proposition 2.4 is a straightforward generalization of the commutative 
case.

Proof. Since ϕτ = λG
f , we see that f(coker ϕ) = 0 so coker ϕ = coker ϕ.

We prove exactness at tw
i

F , exactness at tw
i

G being analogous. Let K be a graded 
free A-module and κ : K → twi

F an A-module map such that κ is a B-module surjection 
onto ker(twi

ϕ). Then im(twi

ϕκ) ⊆ f(twi

G) and we can define an A-module map h : K →
tw(twi

G) = twi+1
G by h(x) = g where g ∈ twi

G satisfies twi

ϕ ◦ κ(x) = fg. For any a ∈ A

we have twi

ϕ ◦ κ(ax) = afg = fσ(a)g so h is A-linear. Since f is regular, h does not 
depend on the choice of g. We have
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λ
twi

F
f ◦ κ = twi−1

τ ◦ twi

ϕ ◦ κ

= twi−1
τ ◦ λtwi

G
f ◦ h

= λ
twi

F
f ◦ twi

τ ◦ h.

Again, since f is regular, κ = twi

τ ◦ h, hence ker twi

ϕ = im κ ⊆ im twi

τ . �
In light of Proposition 2.4, we make the following natural definition.

Definition 2.5. A morphism (ϕ, τ) → (ϕ′, τ ′) of twisted left matrix factorizations of f
over A is a pair Ψ = (ΨG, ΨF ) of degree zero module homomorphisms ΨG : G → G′ and 
ΨF : F → F ′ such that the following diagram commutes.

F
ϕ

ΨF

G

ΨG

F ′
ϕ′

G′

A morphism Ψ is an isomorphism if ΨG and ΨF are isomorphisms.

The regularity of f guarantees that (ΨG, ΨF ) : (ϕ, τ) → (ϕ′, τ ′) is a morphism if and 
only if

(ΨF ,
twΨG) : (τ, twϕ) → (τ ′, twϕ′)

is. It is clear that (ΨG, ΨF ) is a morphism if and only if

(twΨG,
twΨF ) : (twϕ, twτ) → (twϕ′, twτ ′)

is. We leave the straightforward proof of the next Proposition to the reader.

Proposition 2.6. A morphism Ψ : (ϕ, τ) → (ϕ′, τ ′) of twisted matrix factorizations of f
over A induces a chain morphism of complexes Ω(Ψ) : Ω(ϕ, τ) → Ω(ϕ′, τ ′). Twisted ma-
trix factorizations (ϕ, τ) and (ϕ′, τ ′) are isomorphic if and only if the complexes Ω(ϕ, τ)
and Ω(ϕ′, τ ′) are chain isomorphic.

Definition 2.7. We define the direct sum of twisted matrix factorizations (ϕ, τ) and (ϕ′, τ ′)
to be (ϕ ⊕ ϕ′, τ ⊕ τ ′). We call (ϕ, τ) reduced if it is not isomorphic to a factorization 
having a trivial direct summand.

Next we show that a normal, regular homogeneous element gives rise to twisted matrix 
factorizations in many cases of interest. However, see Example 6.1.
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Construction 2.8. Let M be a finitely generated graded left B-module with pdAM = 1. 
Let 0 → F

ϕ−→ G → 0 be a minimal graded resolution of M by graded free left A-modules. 
We have the commutative diagram

twF
twϕ

λF
f

twG

λG
f

F
ϕ

G.

Since M is a B-module, fAM = 0, hence im λG
f ⊆ im ϕ. Thus by graded projectivity 

there exists a lift τ : twG → F such that λG
f = ϕτ :

twF
twϕ

λF
f

twG

λG
f

τ

F
ϕ

G.

Note that since f is regular, λG
f is injective, so τ is injective. Next observe that ϕτ twϕ−

ϕλF
f = 0 and since ϕ is injective, τ twϕ = λF

f .
Applying tw(−) to this diagram, and applying B⊗A− yields the maps that appear in 

the complex Ω(ϕ, τ) of Proposition 2.4:

· · · → B ⊗A
twF

1⊗twϕ−−−−→ B ⊗A
twG

1⊗τ−−−→ B ⊗A F
1⊗ϕ−−−→ B ⊗A G → 0.

Proposition 2.9. Using the notation of Construction 2.8, the complex Ω(ϕ, τ) is exact. 
It is a minimal graded free resolution of BM if and only if M has no B-free direct 
summand.

Proof. Exactness follows from Proposition 2.4. Since F
ϕ−→ G is a minimal resolution 

of AM , the complex tw
i

F
twi

ϕ−−−→ twi

G is a minimal resolution of Atwi

M for all i ≥ 0. Thus 
we have im(twi

ϕ) ⊆ A+(twi

G) for all i ≥ 0. It follows that im(1 ⊗ twi

ϕ) ⊆ B+(B⊗A
twi

G)
for all i ≥ 0. Thus it suffices to consider the maps 1 ⊗ twi

τ .
Now, BM has a B-free direct summand if and only if the twisted module tw

i

M does. 
Since Ω(ϕ, τ) is exact, for each i ≥ 0 we have

im(1 ⊗ twi

τ) ∼= coker(1 ⊗ twi

ϕ) ∼= B ⊗A
twi

M ∼= twi

M.

Since im(1 ⊗ twi

τ) is contained in the radical B+
twi−1

F if and only if no basis for the 
free B-module tw

i

F intersects im(1 ⊗ twi

τ), the result follows. �
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Corollary 2.10. Under the hypotheses and notation of Construction 2.8, the complex 
twn

Ω(ϕ, τ) is a graded free resolution of twn

M for any integer n.

We can also express minimality of the resolution Ω(ϕ, τ) in terms of the twisted matrix 
factoriaztion.

Lemma 2.11. Let A be a graded k-algebra and f ∈ A+ a homogeneous normal regular 
element. A twisted matrix factorization (ϕ, τ) of f over A is reduced if and only if Ω(ϕ, τ)
is a minimal graded free resolution.

Proof. The complex Ω(ϕ, τ) is minimal if and only if coker(1 ⊗ twi

ϕ) and coker(1 ⊗ twi

τ)
have no B-free direct summands for all i ≥ 0. Since the functor tw(−) preserves direct 
sums and free modules, the complex Ω(ϕ, τ) is minimal if and only if coker(1 ⊗ ϕ) =
coker ϕ and coker(1 ⊗ τ) = coker τ have no B-free direct summands. The latter holds if 
and only if (ϕ, τ) is not isomorphic to a twisted factorization (ϕ′, τ ′) where ϕ′ or τ ′ has 
λA
f as a summand. �
Next we turn to periodicity. Clearly the complex Ω(ϕ, τ) is periodic of period at most 

2n if σ has finite order n. In practice, the period is often less than 2n (see Section 6 for 
some examples). Even when |σ| = ∞, the complex may be periodic, as we show in the 
next proposition.

Proposition 2.12. The complex Ω(ϕ, τ) is periodic of period at most 2n if and only if 
σ̄n

M ∼= M as B-modules for some n > 0. In particular, if σ̄M ∼= M , then Ω(ϕ, τ) has 
period at most 2.

Proof. Suppose there exists an integer n > 0 such that σ̄n

M ∼= M . By Lemma 1.2 and 
Corollary 2.10, Ω(ϕ, τ) is periodic of period at most 2n.

Conversely, suppose there exists an integer p > 0, an integer N , and a degree −p

morphism of complexes Φ : Ω(ϕ, τ)(N) → Ω(ϕ, τ) such that Φi+p : Ωi+p(N) → Ωi is 
an isomorphism for all i ≥ 0. Since Φ2 also has this property, we may assume p = 2n is 
even.

By construction, minimal generators of Ωi+p can be taken to be minimal generators 
of Ωi with degrees shifted up by nd. It follows that N = nd. Thus the following diagram 
commutes:

B ⊗A
σn

F
1⊗σn

ϕ

Φ

B ⊗A
σn

G

Φ

B ⊗A F
1⊗ϕ

B ⊗A G.

Therefore

σn

M ∼= coker(1 ⊗ σn

ϕ) ∼= coker(1 ⊗ ϕ) ∼= M. �
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3. Equivalent categories of twisted matrix factorizations

We denote by TMFA(f) the category whose objects are all twisted left matrix factor-
izations of f over A and whose morphisms are defined as in Definition 2.5. As previously 
mentioned, TMFA(f) has a zero object and all finite direct sums. Since morphisms are 
pairs of module maps, monomorphisms and epimorphisms are determined component-
wise. Thus we have the following obvious fact.

Proposition 3.1. TMFA(f) is an abelian category.

Proposition 2.6 shows that forming the resolution Ω(ϕ, τ) defines a functor from the 
abelian category of twisted matrix factorizations of f over A to the abelian category of 
complexes of finitely generated graded free B-modules.

In [19, Theorem 1.2], Zhang completely characterized pairs of graded k-algebras whose 
categories of graded modules are equivalent. With that characterization in mind, we 
consider the question of when categories of twisted matrix factorizations are equivalent.

The following easy fact is useful later.

Proposition 3.2.
(1) For any scalar ν ∈ k×, the categories TMFA(f) and TMFA(νf) are equivalent.
(2) Let φ : A → A be a graded automorphism of A. Then TMFA(f) ≈ TMFA(φ(f)).

Proof. For (1), the functors (ϕ, τ) �→ (ϕ, ντ) and (ϕ, τ) �→ (ϕ, ν−1τ) are easily seen to be 
inverse equivalences. For (2), first observe that φσφ−1 is the normalizing automorphism 
for φ(f). Applying the functor φ−1(−) to any twisted matrix factorization of f over A
produces the desired equivalence. �

We briefly recall the basic definitions underlying Zhang’s graded Morita equivalence 
and encourage the interested reader to see [19] for more details.

A (left) twisting system for A is a set ζ = {ζn | n ∈ Z} of graded k-linear auto-
morphisms of A such that ζn(ζm(x)y) = ζm+n(x)ζn(y) for all n, m, 
 ∈ Z and x ∈ A�, 
y ∈ Am. For example, if φ is a graded k-linear automorphism of A, then setting ζn = φn

for all n ∈ Z gives a twisting system.
Given a twisting system ζ, the Zhang twist of A is the graded k-algebra Aζ where 

ζA = A as graded k-vector spaces and for all x ∈ A� and y ∈ Am, multiplication in ζA
is given by x ∗ y = ζm(x)y. Likewise, if M is a graded left A-module, the twisted left 
ζA-module ζM has the same underlying graded vector space as M , and for m ∈ Mn and 
z ∈ A�, z ∗m = ζn(z)m. Finally, we note that if ϕ : M → N is a degree zero homomor-
phism of graded left A-modules, ϕ : ζM → ζN is also a degree zero homomorphism of 
graded left ζA-modules.

Remark 3.3. Aside from the use of the letter ζ, the notation for the twisted module 
is identical to that used for the functor σ(−) above. However, the notions are not the 
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same. One important difference is that for an integer n, the free left A-modules σ(A(n))
and (σA)(n) are identical, whereas the free left ζA-modules ζ(A(n)) and (ζA)(n) – which 
have the same underlying graded vector space – are generally not identical, but are 
isomorphic via the map ζ−n. In light of this subtlety, the following simple lemma is not 
entirely trivial.

Lemma 3.4. Let A be a graded k-algebra and let f ∈ Ad be a normal regular homogeneous 
element with normalizing automorphism σ. Let ζ = {ζn | n ∈ Z} be a left twisting system.

(1) If ζn(f) = cnf for some c ∈ k× and for all n ∈ Z, then f is normal and regular in 
ζA with normalizing automorphism σ̂(a) = c− deg aσζd(a).

(2) If ζ further satisfies ζnσζd = σζn+d for all n ∈ Z we have

ζ(twA) ∼= t̂w(ζA) := σ̂(ζA)(−d)

as free left ζA-modules.

If the twisting system ζ is “algebraic,” meaning ζnζm = ζn+m for all n, m ∈ Z, the 
additional hypothesis of (2) becomes σζn = ζnσ for all n ∈ Z. In the common case where 
ζn = φn for a k-linear automorphism φ : A → A, one needs only that σφ = φσ.

Proof. Let a ∈ An be an arbitrary homogeneous element. To prove (1), we have

a ∗ f = ζd(a)f = fσ (ζd(a)) = ζ−1
n (f) ∗ σζd(a) = c−nf ∗ σζd(a) = f ∗ σ̂(a)

Thus f is normal in ζA. The equation also shows the regularity of f in ζA follows from 
the regularity of f in A, so σ̂ is the normalizing automorphism.

For (2), first observe that a �→ cdeg aa defines a graded algebra automorphism λc of ζA. 
For any graded left ζA-module M , M ∼= λcM via the map m �→ cdeg mm which we also 
denote λc.

Now, ζ(twA) and t̂w(ζA) have the same underlying graded vector space as A. We 
compute the left ζA action on both modules. With a as above and b ∈ Am, ζA acts on 
t̂w(ζA) by

a • b = σ̂(a) ∗ b = ζm(σ̂(a))b = ζmc− deg aσζd(a)b = c− deg aζmσζd(a)b

and on ζ(twA) by

a • b = ζm+d(a) · b = σζm+d(a)b

since b ∈ Am = Aσ(−d)m+d. Thus λc(t̂w(ζA)) = ζ(twA) and the result follows. �
For completeness, we mention the left module version of Zhang’s theorem on graded 

Morita equivalence.
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Theorem 3.5. (See [19, Theorem 1.2].) Let k be a field and let A and A′ be graded 
k-algebras with A1 �= 0. Then A ∼= ζA′ for some twisting system ζ if and only if the 
categories A-GrMod and A′-GrMod are equivalent.

The equivalence is given by M �→ ζM for any graded A′-module M and is the identity 
on morphisms. We have the following.

Theorem 3.6. Let A be a graded k-algebra, and let f ∈ Ad a normal regular homogeneous 
element of degree d with normalizing automorphism σ. Let ζ = {ζn | n ∈ Z} be a twisting 
system such that for all n ∈ Z, ζnσζd = σζn+d and ζn(f) = cnf for some c ∈ k×. Then 
the categories TMFA(f) and TMF ζA(f) are equivalent.

Proof. By Proposition 3.2, it suffices to prove that TMFA(f) is equivalent to TMFζA(cdf).
Let (ϕ : F → G, τ : twG → F ) be a twisted left matrix factorization of f over A. Let 

λc : t̂w(ζG) → λc(t̂w(ζG)) be the graded isomorphism m �→ cdeg mm as in the proof of 
Lemma 3.4. By Lemma 3.4(2) and the note preceding Remark 3.3,

(ϕ : ζF → ζG, τλc : t̂w(ζG) → ζF )

is a twisted matrix factorization of cdf over ζA. The functoriality of Zhang’s category 
equivalence ζ(−) ensures any morphism (α, β) : (ϕ, τ) → (ϕ′, τ ′) of twisted factorizations 
over A remains a morphism over ζA. This defines a functor TMFA(f) → TMF ζA(f).

The inverse equivalence is given by applying the inverse twisting system ζ−1 =
{ζ−1

n | n ∈ Z} to a twisted matrix factorization over ζA and replacing λc by λc−1 in 
the above construction. �
Corollary 3.7. The equivalence given in the preceding theorem completes a commutative 
diagram of functors

TMFA(f)

coker

TMF ζA(f)

coker

A-GrMod Z ζA-GrMod

where Z denotes Zhang’s equivalence of categories, and coker sends the twisted matrix 
factorization (ϕ, τ) to cokerϕ.

We do not know an example of a twisting system ζ where f remains normal and 
regular in ζA but TMFA(f) and TMF ζA(f) are inequivalent.

In some cases, a normal, regular element can become central in an appropriate Zhang 
twist. By Proposition 2.12, twisted matrix factorizations of a central element produce 
resolutions with period at most 2. Example 6.2 below illustrates the following important 
subtlety.
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Proposition 3.8. The period of a periodic minimal free resolution need not be invariant 
under a Zhang twist.

4. Noncommutative hypersurfaces

One way to easily see the bijection between periodic minimal free resolutions and 
reduced matrix factorizations over commutative rings is via the Auslander–Buchsbaum 
formula. While a version of the Auslander–Buchsbaum formula has been developed for 
left noetherian AS-regular algebras by Jørgensen [11, Theorem 3.2], there is a more 
elementary argument that does not require this hypothesis that is suitable for our needs.

Proposition 4.1. Let f be a normal regular element in a ring A, and let B = A/fA. If

0 → Mj → Pj−1 → · · · → P0 → M0 → 0

is an exact sequence of left B-modules with 1 ≤ j ≤ pdB(M0) and Pi projective for 
i = 0, . . . , j − 1, then

pdA(Mj) = max{1, pdA(M0) − j}.

Proof. Let M be a nonzero B-module. Then M is annihilated by f , so M is not a 
submodule of a free A-module. Therefore pdAM ≥ 1. If M is projective as a B-module, 
it is a direct summand of a direct sum of copies of B, thus pdAM ≤ pdAB = 1, hence 
pdAM = 1.

The claim is clear when pdAM0 is infinite, so we may assume that pdAM0 = p < ∞. 
By splicing together the short exact sequences linking Mj and M0, it suffices to prove 
the claim when j = 1.

If p = 1, let g : P0 → M0 be the given map, and let h : Q → P0 be a surjection with 
Q a projective A-module. Let K = ker g and L = ker gh. One then has a commutative 
diagram of left A-modules with exact rows

0 K

g′

Q
h

P0

g

0

0 L Q
gh

M 0.

The snake lemma implies that ker g′ = 0 and coker g′ ∼= ker g ∼= M1, so there is an 
exact sequence of left A-modules

0 → K → L → M1 → 0.

Since pdA(P0) = 1 = pdA(M0), both K and L are projective left A-modules. This 
implies that pdAM1 ≤ 1 and hence pdAM1 = 1.
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When p ≥ 2 and N is an A-module, the connecting map ExtnA(M1, N) →
Extn+1

A (M0, N) defined by the exact sequence 0 → M1 → P0 → M0 → 0 is an iso-
morphism for n = p and an epimorphism for n = p − 1. Therefore pdAM1 = p − 1. �
Theorem 4.2. Let A be a graded algebra of global dimension n < ∞, f ∈ A+ a homoge-
neous normal regular element and let σ be its normalizing automorphism. Set B = A/(f). 
If

Q : · · · → Q2 → Q1 → Q0

is a minimal graded free left B-module resolution of a finitely generated graded left 
B-module M , then

(1) The truncated complex · · · → Qn+2 → Qn+1 is chain isomorphic to Ω(ϕ, τ) for some 
reduced twisted left matrix factorization (ϕ, τ).

Assuming further that |σ| < ∞, one has that
(2) Q becomes periodic of period at most 2|σ| after n + 1 steps.
(3) Q is periodic (of period at most 2|σ|) if and only if pdA(M) = 1 and M has no 

graded free B-module summand.
(4) Every periodic minimal graded free left module resolution over B has the form 

Ω(ϕ, τ) for some reduced twisted left matrix factorization (ϕ, τ) of f over A.

Proof. Let P → M be a minimal free resolution of M over A, and let Ωi(M) := im(Pi →
Pi−1) denote the i-th syzygy of M . By Proposition 4.1, we have that pdA(Ωi(M)) = 1 for 
some 0 ≤ i ≤ d. If Ωi(M) = Ω′

i(M) ⊕ F where F is a graded free B-module and Ω′
i(M)

has no free summand, then pdA(Ω′
i(M)) = 1. By Construction 2.8 and Proposition 2.9

there exists a twisted left matrix factorization (ϕ, τ) such that Ω(ϕ, τ) is a periodic 
minimal graded free resolution of Ω′

i(M). If F [i] denotes the free module F viewed as a 
complex concentrated in homological degree i, it follows that

Q̃ : Ω(ϕ, τ) ⊕ F [i] → Qi−1 → · · · → Q0

is a minimal graded free resolution of M (or, if i = 0, Ω(ϕ, τ) ⊕ F is a resolution). 
By uniqueness of minimal resolutions, Q̃ ∼= Q. Truncating each complex at homological 
degree i +1 and recalling that if (ϕ, τ) is a twisted matrix factorization, so are (twϕ, twτ)
and (τ, twϕ), we have established (1).

If |σ| < ∞, the resolution Q̃ is periodic of period at most 2|σ| after i + 2 steps and 
rank Q̃j = rank Q̃i+2 for all j ≥ i +2. This proves (2). Setting i = 0 and Ω′

i(M) = Ωi(M), 
we also obtain the “if” direction of (3).

Now suppose that Q is periodic of period p. If Ωi(M) has a free summand, 
rank Qp+i+1 = rank Qi+1 > rank Qi+2. But this is impossible, since Q and Q̃ are 
isomorphic minimal free resolutions. Thus Ωi(M) has no free direct summand and 
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Q̃ : Ω(ϕ, τ) → Qi → · · · → Q0 is a minimal free resolution of M . By Lemma 1.1, 
rank Q̃j = rank Q̃0 for all j ≥ 0, so M has no free direct summand.

By graded periodicity, M = coker(Q1 → Q0) is isomorphic to coker(1 ⊗ σm

ϕ) or 
coker(1 ⊗ σm

τ) for some m. Since both maps lift to injective maps of free A-modules, 
pdA(M) = 1. This completes the proof of (3). Since (twm

ϕ, tw
m

τ) and (twm

τ , tw
m+1

ϕ) are 
also twisted matrix factorizations, (4) follows as well. �

Taking A to be the polynomial ring k[x1, . . . , xn], we recover a graded version of [5, 
Theorem 6.1] as a special case of Theorem 4.2. We remark that the analogous theorem 
in [5] relies on the existence of regular sequences of length depth (A), whereas our proof 
necessarily avoids this assumption.

As a first corollary, we have the following useful fact.

Corollary 4.3. Let A, f , and B as in Theorem 4.2. Assume |σ| < ∞. If (Q, ∂) is a 
minimal graded free left B-module resolution of a finitely generated module, then im ∂k
has no free summands for k ≥ d + 1.

We also see that resolutions of the trivial module Bk have a very rigid structure. Note 
we do not need to assume |σ| < ∞.

Corollary 4.4. Let A, f , and B as in Theorem 4.2. There exists a minimal graded free 
resolution of the trivial B-module Bk which becomes periodic of period at most 2 after 
d + 1 steps.

Proof. Let Q be a minimal graded free resolution of Bk. By Theorem 4.2, there exists a 
twisted left matrix factorization (ϕ, τ) of f such that Ω(ϕ, τ) is a minimal graded free 
resolution of the (d + 1)-st syzygy Ωd+1(Bk).

Let σ̄ : B → B be the automorphism induced by σ. Clearly, σ̄(Bk) ∼= Bk, so there 
exists a chain isomorphism Φ : σ̄Q → Q by Lemma 1.2. By the 5-Lemma, Φd+1 restricts 
to a graded B-module isomorphism

σ̄(Ωd+1(Bk)) ∼= Ωd+1(Bk).

The result follows from Proposition 2.12. �
Recall that a graded free resolution (P•, d•) is called linear if Pi is generated in degree 

i for all i ≥ 0.

Corollary 4.5. Let A, f , and B be as in Theorem 4.2. Additionally assume f is quadratic. 
Then the truncation Q≥d+1(d + 1) is a linear free resolution of ker ∂d.
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5. Homotopy category of twisted matrix factorizations

In [4, Theorem 4.4.1], Buchweitz established an equivalence between the stable cate-
gory of maximal Cohen–Macaulay modules over a noetherian ring B with finite left and 
right injective dimensions and a quotient of the bounded derived category of modules 
over B now called the singularity category. He noted the equivalence also holds in the 
graded case. In [17, Theorem 3.10], Orlov proved that if B is a graded factor algebra of a 
finitely generated, connected, N-graded noetherian k-algebra A of finite global dimension 
by a central regular element W , then the singularity category of graded B-modules is 
equivalent to a category Orlov called “the category of graded D-branes of type B for 
the pair (B, W ).” In this section we extend Orlov’s result to factors of left noetherian 
AS-regular algebras by regular, normal elements. Much of Orlov’s work goes through 
with the obvious necessary changes. The key difference is that |σ| need not be finite in 
our case, so we cannot appeal to periodicity of a resolution.

Before stating our main result, we recall some definitions.

Definition 5.1. Let A be a graded k-algebra. Then A is Artin-Schelter regular of dimen-
sion n if

(1) gl.dim(A) = n < ∞
(2) GKdim(A) = n

(3) ExtiA(k, A) = δi,nk

We frequently abbreviate this condition as AS-regular. We also note that the results 
below in which A is an AS-regular algebra do not require the assumption that the 
Gelfand-Kirillov dimension is finite.

In this section, we focus on the case that A is a left noetherian AS-regular algebra of 
dimension n. We continue to let f ∈ A+ be a normal, regular homogeneous element with 
normalizing automorphism σ, and let B = A/(f). We will also continue to consider left 
modules over B.

We begin by recalling the definition of maximal Cohen–Macaulay modules.

Definition 5.2. A finitely generated graded module M over a graded left noetherian 
k-algebra B of finite left and right injective dimension is called maximal Cohen–Macaulay
if and only if ExtiB(M, B) = 0 for i �= 0.

Lemma 5.3. Let A be a left noetherian, AS-regular algebra. Let f ∈ A+ be a homogeneous 
normal regular element and let B = A/(f). Then for any finitely generated graded left 
B-module M , pdA(M) = 1 if and only if ExtiB(M, B) = 0 for all i �= 0.

Proof. We have pdA(M) = 1 if and only if ExtiA(M, A) = 0 for all i > 1. One direction 
of this is clear. The other is Jørgensen’s Ext-vanishing theorem [12, Theorem 2.3]. Let 
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d = deg f . Since 0 → A(−d) f−→ A → B → 0 is a minimal graded free resolution of AB, 
we see that ExtA(B, A) is concentrated in homological degree 1 and Ext1A(B, A) ∼= B(d)
as graded left B-modules. Then the change of rings spectral sequence

ExtpB(M,ExtqA(B,A)) ⇒ Extp+q
A (M,A)

shows ExtiB(M, B) = 0 for i �= 0 if and only if ExtiA(M, A) = 0 for all i > 1. �
There is a natural functor of abelian categories C : TMFA(f) → B-GrMod given on 

objects by (ϕ, τ) �→ coker ϕ. (Recall from the proof of Proposition 2.4 that coker ϕ is a 
B-module.) A morphism Ψ : (ϕ, τ) → (ϕ′, τ ′) induces a well-defined map ψ : coker ϕ →
coker ϕ′ by π′ΨGπ

−1 where π : G → coker ϕ and π′ : G′ → coker ϕ′ are the canonical 
projections, and π−1 is any section of π.

The functor C is not essentially surjective2; objects in the image of C are finitely 
generated B-modules M such that pdA(M) = 1. By Lemma 5.3, if A is left noetherian 
and AS-regular, the image of C consists of maximal Cohen–Macaulay modules.

We denote the full subcategory of maximal Cohen–Macaulay modules in B-GrMod
by MCM (B). Following [4], we define the category of stable maximal Cohen–Macaulay 
modules, which we denote MCM (B), to have the same objects as MCM (B), but for 
M, N ∈ MCM (B),

HomMCM(B)(M,N) = HomB(M,N)/R

where R is the subspace of morphisms which factor through a graded free B-module.
As in [4] and [17], let Db(B) be the bounded derived category of finitely generated 

graded left B-modules. A complex in Db(B) is called perfect if it is isomorphic in Db(B)
to a complex of finitely generated graded free modules. Perfect complexes form a full, 
triangulated subcategory Db

perf (B) of Db(B). The singularity category of B is defined 
to be the quotient category Db

sg(B) = Db(B)/Db
perf (B).

As noted in [4, p. 16], the composition MCM (B) → Db(B) → Db
sg(B), where the 

first functor takes a module to its trivial complex, factors uniquely through the quotient 
MCM (B) → MCM (B), yielding a functor G : MCM (B) → Db

sg(B). Buchweitz showed 
that G is an exact equivalence. The equivalence G induces a triangulated structure on 
MCM (B). (It is possible to describe the triangulated structure independently, see [4], 
but as we will not need it, we omit any details.)

Thus it is natural to consider a “stable” version of the category TMFA(f). To motivate 
the definition, we remark that the category TMFA(f) is equivalent to the category of 
doubly-infinite sequences of graded free A-module homomorphisms of the form

· · · → twF
twϕ−−→ twG

τ−→ F
ϕ−→ G

tw−1
τ−−−−→ tw−1

F → · · ·

2 A functor F : C → D is essentially surjective if every object in D is isomorphic to F (c) for some object 
c in C.
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whose compositions are multiplication by f , and whose morphisms are maps of sequences

Ψ = (. . . , twΨF ,
twΨG,ΨF ,ΨG,

tw−1
ΨF , . . .)

satisfying the necessary commutation relations. We adopt the structure of the homotopy 
category of such sequences of graded free A-modules.

Definition 5.4. A morphism Ψ : (ϕ, τ) → (ϕ′, τ ′) is null homotopic if there exists a pair 
(s, t) of degree zero module homomorphisms s : G → F ′ and t : F → twG′ such that 
twΨG = twϕ′tws + tτ and ΨF = τ ′t + sϕ.

We denote by hTMFA(f) the quotient (homotopy) category of TMFA(f) with the 
same objects, and whose morphisms are equivalence classes of morphisms in TMFA(f)
modulo null homotopic morphisms. Observe that taking s : A → A to be the identity 
map and t : A → twA to be zero shows the identity map (idA, λA

f ) → (idA, λA
f ) is null 

homotopic. Thus (idA, λA
f ) ∼= 0 in hTMFA(f).3

A similar calculation shows (λA
f , idtwA) ∼= 0 in this category. More generally we have 

the following.

Lemma 5.5. If (ϕ, τ) ∈ TMFA(f) such that coker ϕ is a graded free B-module, then 
(ϕ, τ) ∼= 0 in hTMFA(f).

Proof. The lemma is trivial if ϕ = 0, so suppose ϕ �= 0 and M = coker ϕ = coker (B⊗A

F
1⊗ϕ−−−→ B ⊗A G) is a graded free left B-module. Let ψ : M → B ⊗A G be a graded 

splitting of the canonical projection π, viewed as a map of graded left A-modules. Since 
B ⊗A G is isomorphic (as a left A-module) to the cokernel of λG

f : twG → G, lifting ψ
gives a commutative diagram with exact rows

0 F
ϕ

ΨF

G

ΨG

M

ψ

0

0 twG
λG
f

τ

G

id

B ⊗A G

π

0

0 F
ϕ

G M 0

Since πψ = idM , there exists s : G → F such that idF − τΨF = sϕ and idG − ΨG = ϕs

by the comparison theorem. (The only A-module homomorphism M → G is the zero 
map.) If we now set t = ΨF , the morphism (ΨG, τΨF ) of twisted matrix factorizations 

3 Recall that objects (ϕ, τ), (ϕ′, τ ′) are isomorphic in hTMFA(f) if and only if there exist maps Φ and 
Ψ between them such that id(ϕ,τ) − ΦΨ and id(ϕ′,τ ′) − ΨΦ are null homotopic.
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is chain homotopic to the identity map on (ϕ, τ) via the pair (s, t). Indeed, it is clear 
that idF = τt + sϕ. To see that idtwG = twϕtws + tτ , it suffices to show twΨG = tτ . This 
follows from the equalities

0 = twΨG
twϕ− λ

twG
f

twΨF = twΨG
twϕ− ΨFλ

F
f = twΨG

twϕ− ΨF τ
twϕ

and the injectivity of ϕ. �
Remark 5.6. A fact that is implicit in the previous proof is that TMFA(f) → MCM (B), 
and hence the composite C : TMFA(f) → MCM (B), is a full functor.

Our next objective is to establish the following fact.

Proposition 5.7. The category hTMFA(f) is a triangulated category.

We begin with a few definitions. The translation functor on hTMFA(f) is given by 
(ϕ, τ)[1] = (−tw−1

τ , −ϕ) on objects and by Ψ[1] = (tw−1ΨF , ΨG) on morphisms. For any 
morphism Ψ : (ϕ, τ) → (ϕ′, τ ′) the mapping cone of Ψ is the pair

C(Ψ) = (γ : F ′ ⊕G → G′ ⊕ tw−1
F , δ : twG′ ⊕ F → F ′ ⊕G)

where

γ =
(

ϕ′ 0
ΨG −tw−1

τ

)
and δ =

(
τ ′ 0
ΨF −ϕ

)
.

By the above matrix notation, we mean that the maps γ and δ are given as follows on 
ordered pairs:

γ(x′, y) =
(
ϕ′(x′) + ΨG(y),−tw−1

τ(y)
)

δ(y′, x) = (τ ′(y′) + ΨF (x),−ϕ(x)) .

It is straightforward to check that this pair is a twisted matrix factorization and there 
exist canonical inclusion and projection morphisms i : (ϕ′, τ ′) → C(Ψ) and p : C(Ψ) →
(ϕ, τ)[1]. Moreover, given a commutative square of twisted factorizations

(ϕ, τ) Ψ

Π

(ϕ′, τ ′)

Π′

(γ, δ)
Φ

(γ′, δ′)

an easy diagram chase shows (Π′
G⊕tw−1ΠF , Π′

F ⊕ΠG) defines a morphism C(Ψ) → C(Φ). 
Note that the complex Ω(C(Ψ)) is the mapping cone of the induced morphism of com-
plexes Ω(Ψ) : Ω(ϕ, τ) → Ω(ϕ′, τ ′).
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We define a standard triangle to be any sequence of maps in hTMFA(f)

(ϕ, τ) Ψ−→ (ϕ′, τ ′) i−→ C(Ψ) p−→ (ϕ, τ)[1].

We define a distinguished triangle to be any triangle

(ϕ, τ) Ψ−→ (ϕ′, τ ′) Ψ′
−−→ (ϕ′′, τ ′′) Ψ′′

−−→ (ϕ, τ)[1]

isomorphic to a standard triangle. For any twisted factorization (ϕ, τ), the triangle

(ϕ, τ) id−→ (ϕ, τ) → 0 → (ϕ, τ)[1]

is distinguished. To see this, consider the diagram

(ϕ, τ) id

id

(ϕ, τ)

id

0 (ϕ, τ)[1]

id

(ϕ, τ) id (ϕ, τ) i
C(id)

p
(ϕ, τ)[1]

and note that idC(id) is null homotopic via the pair

s : G⊕ tw−1
F → F ⊕G t : F ⊕G → twG⊕ F

both given by (x, y) �→ (0, x). Precomposing this homotopy with the canonical inclu-
sion (ϕ, τ) → C(id) shows that i is null homotopic. Thus the diagram commutes in 
hTMFA(f), and is hence an isomorphism of triangles in hTMFA(f).

To show hTMFA(f) is triangulated, it remains to show distinguished triangles are 
closed under rotations and that the octahedral axiom holds. The argument very closely 
follows the proof of [7, Theorem IV.1.9]. We discuss only rotations of distinguished 
triangles in detail, leaving the translation of the remainder of the proof from [7] to the 
interested reader.

To verify the class of distinguished triangles is closed under rotations, it suffices to 
consider standard triangles.

Let

(ϕ, τ) Ψ−→ (ϕ′, τ ′) i−→ C(Ψ) p−→ (ϕ, τ)[1]

be a standard triangle. To see the rotated triangle

(ϕ′, τ ′) i−→ C(Ψ) p−→ (ϕ, τ)[1] −Ψ[1]−−−−→ (ϕ′, τ ′)[1]

is distinguished, first observe that C(i) is given by the pair
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(F ′ ⊕G) ⊕G′

⎛⎜⎜⎝
ϕ′ 0 0
ΨG −tw−1

τ 0
id 0 −tw−1

τ ′

⎞⎟⎟⎠
−−−−−−−−−−−−−−−−−−−−→

(
G′ ⊕ tw−1

F
)
⊕ tw−1

F ′

(twG′ ⊕ F
)
⊕ F ′

⎛⎜⎝ τ ′ 0 0
ΨF −ϕ 0
id 0 −ϕ′

⎞⎟⎠
−−−−−−−−−−−−−−−→ (F ′ ⊕G) ⊕G′.

Let Θ : (ϕ, τ)[1] → C(i) be the morphism defined by the pair

Θtw−1
F

: tw−1
F

(0 id −tw−1
ΨF )−−−−−−−−−−→ G′ ⊕ tw−1

F ⊕ tw−1
F ′,

ΘG : G (0 id −ΨG)−−−−−−−−→ F ′ ⊕G⊕G′.

This gives a diagram

(ϕ′, τ ′) i

id

C(Ψ)
p

id

(ϕ, τ)[1]

Θ

−Ψ[1]
(ϕ′, τ ′)[1]

id

(ϕ′, τ ′) i
C(Ψ)

j
C(i)

q
(ϕ′, τ ′)[1]

where j and q are the canonical morphisms for the mapping cone C(i). The first and 
last squares are easily seen to commute.

The middle square, however, commutes only up to homotopy. The morphism j − Θp

is seen to be null homotopic via the pair of maps

s : G′ ⊕ tw−1
F → F ′ ⊕G⊕G′ t : F ′ ⊕G → twG′ ⊕ F ⊕ F ′

both given by (x, y) �→ (0, 0, x). To see that Θ is an isomorphism in hTMFA(f), let 
π : C(i) → (ϕ, τ)[1] be the canonical projection. Then πΘ is the identity on (ϕ, τ)[1] and 
idC(i) − Θπ is seen to be null homotopic by precomposing the pair (s, t) above with the 
projection C(i) → C(Ψ). This shows the class of distinguished triangles is closed under 
rotations.

Theorem 5.8. Let A be a left noetherian AS-regular algebra, f ∈ A+ a homogeneous 
normal regular element, and B = A/(f). Then the categories hTMFA(f), MCM (B), 
and Db

sg(B) are equivalent.

Proof. Since G is known to be an exact equivalence, it suffices to show hTMFA(f) ≈
MCM (B).
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The functor C : TMFA(f) → MCM (B) factors through the projection to hTMFA(f)
to complete the commutative diagram of functors

TMFA(f) C

C

MCM (B) Db(B)

hTMFA(f) F MCM (B)
G

Db
sg(B).

To see this, it is enough to show that any null homotopic morphism Ψ : (ϕ, τ) →
(ϕ′, τ ′) induces the zero map in MCM (B). Specifically, we show the induced map ψ :
coker ϕ → coker ϕ′ factors through the graded free module B ⊗A G′. The morphism Ψ
factors as

(ϕ, τ) Φ−→ (γ, δ) Π−→ (ϕ′, τ ′)

through the twisted “horseshoe” factorization (γ, δ) where

γ : twG′ ⊕ F ′

(−τ ′ 0
id ϕ′

)
−−−−−−−−−→ F ′ ⊕G′,

δ : twF ′ ⊕ twG′

(−twϕ′ 0
id τ ′

)
−−−−−−−−−−→ twG′ ⊕ F ′,

ΦG = (s, ΨG), ΦF = (t, ΨF ) and Π is the canonical projection onto the second factor.
We claim coker γ = B ⊗A G′. For any x ∈ F ′ and y ∈ G′, (x, y) = (0, y − ϕ′(x)) in 

coker γ. Thus there is a surjection G′ � coker γ. The kernel of this surjection consists of 
z ∈ G′ such that z = ϕ′τ ′(w) = fw for some w ∈ twG′. So coker γ = G′/fG′ = B⊗A G′.

Now the induced maps coker ϕ 
φ−→ B ⊗A G′ π−→ coker ϕ′ show the map ψ induced by 

Ψ factors through a graded free module, hence is the zero map in MCM(B). Thus the 
functor F is well-defined.

The triangulated structure on MCM (B) is induced by G, so to prove F is an exact 
functor, it suffices to check that GF is exact. By Proposition 2.9, Ω((ϕ, τ)[1]) is exact. 
Thus

0 → coker (−ϕ) → B ⊗A
tw−1

F → coker (−tw−1
τ) → 0

is a short exact sequence in B-GrMod, and hence

coker (−ϕ) → B ⊗A
tw−1

F → coker (−tw−1
τ) → (coker (−ϕ))[1]

is a distinguished triangle in Db
sg(B). Since B ⊗A

tw−1
F is graded free, the first two 

morphisms are zero. Rotating the triangle yields
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coker(−tw−1
τ) ∼= (coker (−ϕ))[1] ∼= (coker ϕ)[1] = (F (ϕ, τ))[1]

in Db
sg(B). Thus we have a natural isomorphism (F(ϕ, τ))[1] ∼= F((ϕ, τ)[1]). That F

takes a standard triangle in hTMFA(f) to a distinguished triangle in Db
sg(B) follows 

from this natural isomorphism, the fact that for a morphism Ψ : (ϕ, τ) → (ϕ′, τ ′), 
Ω(C(Ψ)) is the mapping cone of Ω(Ψ) : Ω(ϕ, τ) → Ω(ϕ′, τ ′), and the usual property of 
mapping cones fitting into long exact sequences in homology.

By Construction 2.8, C is surjective on objects of MCM (B), hence the same is true 
of F . Since C is full by Remark 5.6, F is as well.

To see that F is injective on objects, we show GF is. Suppose GF(ϕ, τ) ∼= 0 in 
Db

sg(B). Then M = coker ϕ admits a finite length graded free B-module resolution, so 
ExtiB(M, N) = 0 for all N and all i � 0. By Proposition 2.9, Ω(ϕ, τ) is a graded free 
B-module resolution. Thus for some n, ExtiB(coker(1 ⊗ twn

ϕ), N) = 0 for all N and all 
i > 0. That is, coker(1 ⊗ twn

ϕ) is graded free. As noted in the proof of Proposition 2.9, 
coker(1 ⊗ twn

ϕ) ∼= twn

M . Since M is free if and only if twM is, M is graded free. By 
Lemma 5.5, (ϕ, τ) ∼= 0 in hTMFA(f).

That F is faithful now follows from the triangulated structure (see [17, Theo-
rem 3.9]). �

Zhang proves in [19, Theorem 1.3] that, among other properties, being noetherian, 
AS regular or AS-Gorenstein is invariant under graded Morita equivalence. Thus, in the 
case where A is left noetherian and AS-regular, the equivalence theorems of Section 3
imply equivalences of the corresponding categories of singularities.

6. Examples

Example 6.1. Let V be a finite-dimensional vector space over a field k with skew-
symmetric, nondegenerate form ω. Assume dimV = 2n ≥ 4 and let h be the corre-
sponding Heisenberg Lie algebra and U(h) its universal enveloping algebra. Then U(h)
can be presented by generators x1, . . . , xn, y1, . . . , yn subject to the relations

[xi, xj ] = [yi, yj ] = 0

[xi, yj ] = 0 for i �= j

[x1, y1] = [x2, y2] = · · · = [xn, yn].

Since h is a Lie algebra of dimension 2n + 1, U(h) is Artin-Schelter regular of dimen-
sion 2n + 1. The element f = [x1, y1] is central and regular, and B = U(h)/(f) ∼=
k[x1, . . . , xn, y1, . . . , yn] is a commutative polynomial ring. By Hilbert’s Syzygy Theo-
rem, every finitely generated left B-module has a finite minimal graded free resolution. 
Thus there exist no nontrivial reduced twisted left matrix factorizations of f .
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Example 6.2. Let A = k[x, y][w; ζ] be a graded Ore extension of a commutative poly-
nomial ring in two variables by a graded automorphism ζ, where wg = ζ(g)w for all 
g ∈ k[x, y]. Then w2 is regular and its normalizing automorphism is σ = ζ−2. After 
choosing bases, we define homomorphisms ϕ : F → G and τ : twG → F of graded free 
left A-modules via right multiplication by the matrices

[ϕ] =
(
w −ζ(x)
0 w

)
and [τ ] =

(
w ζ2(x)
0 w

)
.

Note [twϕ] =
(
w −ζ3(x)
0 w

)
. A straightforward verification shows that ϕτ = λw2 and 

τ twϕ = λw2 . (We remind the reader that since we work with left modules, the composition 
is computed by multiplying matrices in the opposite order.) Examining for periodicity, 
we see that the minimal resolution Ω(ϕ, τ) is periodic of period p if and only if ζp(x) = cx

for some integer p and scalar c. This example suggests a useful method for constructing 
twisted factorizations with desired properties. For example, if ζ(x) = x +y and ζ(y) = qy

where q is a primitive n-th root of unity, then the resolution is periodic of period n.
As another example, taking ζ(x) = (x + y)/2 and ζ(y) = y/2 we obtain a resolution 

which is not periodic. But it is interesting to note that since ζn(x) → 0 as n → ∞, the 

limiting matrix 
(
w 0
0 w

)
defines a minimal resolution which is periodic of period 1. In 

this sense, the resolution becomes periodic after infinitely many steps.
In any case, extend ζ to a graded automorphism of A by ζ(w) = w. Let Z = {ζn |

n ∈ Z} be the associated twisting system. The twisted multiplication in ZA gives

g ∗ w2 = ζ2(g)w2 = w2g = w2 ∗ g

for all g ∈ A so w is central in ZA. By Proposition 2.12, every twisted matrix factorization 
of w2 over ZA gives rise to a minimal graded free resolution of period at most 2.

Example 6.3. Let A = k〈x, y, z〉/〈r1, r2, r3〉 where

r1 = yz + zy − x2

r2 = xz + zx− y2

r3 = xy + yx− z2.

The algebra A is a nondegenerate 3-dimensional Sklyanin algebra. The element g =
2(y3+xyz−yxz−x3) (the factor of 2 is only to clean up the twisted matrix factorization) 
is central and regular in A, so σ = idA. Let

ϕ =

⎛⎝ x y z 0
−yz−2x2 −yx zx−xz x

xy−2yx xz −x2 y
2 2

⎞⎠

−y −zx x −xy z
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and

τ =
( −zy −x z y

zx−xz z −y x
xy y x −z

2xyz−4x3 −2x2 2y2 2(xy−yx)

)

be matrices with entries in A. One can check (it is not trivial) that τϕ = ϕτ = gI4. 
This matrix factorization produces a minimal resolution of the second syzygy module in 
a minimal resolution of the trivial module Bk. Indeed if we put

M2 =
( −x z y

z −y x
y x −z

−2x2 2y2 2(xy−yx)

)
M1 =

( x
y
z

)
then

· · · ϕ−→ B(−5)3 ⊕B(−6) τ−→ B(−3) ⊕B(−4)3 ϕ−→

B(−2)3 ⊕B(−3) M2−−→ B(−1)3 M1−−→ B

is a minimal graded free left B-module resolution of Bk.

Example 6.4. Let A = kq[x, y] be the skew polynomial ring where yx = qxy for some fixed 
q ∈ k×. Let g be the graded automorphism of A given by g(x) = λx and g(y) = λ−1y

where λ is a primitive n-th root of unity. Let G = 〈g〉, the cyclic group of order n, act on 
A with invariant subring AG. Classically (when q = 1), this is an An Kleinian singularity. 
It is not hard to check that AG is generated by X := xn, Y := xy, and Z := yn, and 
AG ∼= C/(ω), where

C = k〈X,Y, Z〉/〈Y X − qnXY,ZX − qn
2
XZ,ZY − qnY Z〉

is a skew polynomial ring and ω := XZ − q−
(n
2
)
Y n is a regular normal element of C [13, 

Case 2.2]. Let C be graded by setting degX = degZ = n, and deg Y = 2. Note that C
is noetherian and AS-regular of dimension 3 and one has relations

ωX = qn
2
Xω, ωY = Y ω, and ωZ = q−n2

Zω.

The sets Mj = {a ∈ A | g(a) = λja} for 0 ≤ j < n are graded left R = AG modules, 
generated by xj and yn−j . Note that M0 = R, and henceforth assume j �= 0.

As a module over C, a minimal resolution of Mj has the form

0 −→ C(−2n + j) ⊕ C(−n− j) Gj−→ C(−j) ⊕ C(−n + j) D−→ Mj −→ 0,

where the maps are given by right multiplication by4:

4 We adopt the usual convention that 
(k
l

)
= 0 for k < l.
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D :=
(

xj

yn−j

)
and Gj :=

(
−q−

(n−j
2

)
Y n−j q(n−j)jX

−Z qnj−
(j
2
)
Y j

)
.

Thus pdCMj = 1, and hence Mj is a maximal Cohen–Macaulay R-module. It is worth 
noting that when q = 1, the Mj form a complete set of maximal Cohen–Macaulay 
R-modules [16, Example 5.25].

Next, observe that

Gn−jGj =
(
−q(n−j)jω 0

0 −q(n−j)j+n2
ω

)
= GjGn−j .

This shows 0 → Mn−j(−n) Gj−−→ R(−j) ⊕ R(−n + j) D−→ Mj → 0, where Gj is the 
R-module map induced on coker Gn−j by Gj , is an exact sequence of R-modules. So 
a minimal graded R-module resolution of Mj is periodic of period at most 2 for every 
0 < j < n. (When n = 2, the resolution has period 1.) With a small adjustment, we 
obtain a complex arising from a twisted matrix factorization of ω. Let

Δ :=
(−1 0

0 −qn
2

)
, Nj := GjΔ−1 =

(
q−

(n−j
2

)
Y n−j −q(n−j)j−n2

X

Z −qnj−
(j
2
)
−n2

Y j

)
,

and Pn−j := q−(n−j)jGn−j . Then we have

Pn−j :=
(
−q−

(j
2
)
−j(n−j)Y j X

−q−(n−j)jZ q(n−j)2−
(n−j

2
)
Y n−j

)
,

and

twNj =
(
q−

(n−j
2

)
Y n−j −q(n−j)jX

q−n2
Z −qnj−

(j
2
)
−n2

Y j

)
.

Finally we have Pn−jNj = ωI = twNjPn−j as desired. We note that |σ| = |q|, which can 
be an arbitrary positive integer or infinite.
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