Sep 10, 1999

PHY 711 -- Lecture notes on PHY 711 - Lecture notes on Lagrangian for Electric and Magnetic Fields

For simplicity, consider a Lagrangian for a single particle having the form (in Cartesian coordinates) L(x,y,z,[x\dot],[y\dot],[z\dot],t) º T - U. The Euler-Lagrange equations have the form:

d
dt
æ
ç
ç
ç
è
L
.
x
 
ö
÷
÷
÷
ø
- L
x
= 0,
(1)
with similar equations for y and z. We can show that this form is consistent with Newton's Laws if the potential function U takes the form:
U = U0(x,y,z,t) + UEM(x,y,z, .
x
 
, .
y
 
, .
z
 
,t),
(2)
where UEM represents the interaction of our particle (having charge q) with an electric field E and magnetic field B where we can represent the fields in terms of the scalar and vector potentials:
E = - Ñf- 1
c
A
t
         and         B = Ñ×A.
(3)
We must find UEM which is both consistent with the Euler-Lagrange Eq.(1) and with the Lorentz force (written in the x direction):
Fx = q (Ex + 1
c
( .
r
 
×B)ûx ) = - UEM
x
+ d
dt
æ
ç
ç
ç
è
UEM
.
x
 
ö
÷
÷
÷
ø
.
(4)
We note that the magnetic field terms can be evaluated:
.
r
 
×(Ñ×A)ûx = .
y
 
æ
ç
è
Ay
x
- Ax
y
ö
÷
ø
- .
z
 
æ
ç
è
Ax
z
- Az
x
ö
÷
ø
.
(5)
The right hand side of Eq.(5) (with the addition and subtraction of a convenient term) can be written:


.
x
 
Ax
x
+ .
y
 
Ay
x
+ .
z
 
Az
x

([(r)\dot]·A)/x 
-

.
x
 
Ax
x
- .
y
 
Ax
y
- .
z
 
Ax
z

-d Ax/dt + Ax/t 
,
(6)
where we are assuming that Ax = Ax(x,y,z,t). Noting that Ax = ([(r)\dot]·A)/[x\dot], the electromagnetic force can thus be written:
Fx =

-q f
x
- q
c
Ax
t

q Ex 
+ q
c
æ
ç
ç
ç
ç
è


([(r)\dot]·A)
x
- d
dt
([(r)\dot]·A)
.
x
 
+ Ax
t

([(r)\dot]×B)ûx 
ö
÷
÷
÷
÷
ø
.
(7)
Simplifying this equation, we obtain
Fx = -
x
æ
ç
è
q f- q
c
.
r
 
·A ö
÷
ø
- d
dt

.
x
 
æ
ç
è
q
c
.
r
 
·A ö
÷
ø
.
(8)
Thus, we finally have the result
UEM = q f- q
c
.
r
 
·A.
(9)


File translated from TEX by TTH, version 2.20.
On 10 Sep 1999, 18:32.