PHY 711 – Lecture notes on Lagrangian for Electric and Magnetic Fields

For simplicity, consider a Lagrangian for a single particle having the form (in Cartesian coordinates)
\[L(x, y, z, \dot{x}, \dot{y}, \dot{z}, t) \equiv T - U. \]
The Euler-Lagrange equations have the form:
\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0, \quad (1) \]
with similar equations for \(y \) and \(z \). We can show that this form is consistent with Newton’s Laws if the potential function \(U \) takes the form:
\[U = U^0(x, y, z, t) + U^{EM}(x, y, z, \dot{x}, \dot{y}, \dot{z}, t), \quad (2) \]
where \(U^{EM} \) represents the interaction of our particle (having charge \(q \)) with an electric field \(E \) and magnetic field \(B \) where we can represent the fields in terms of the scalar and vector potentials:
\[E = -\nabla \phi - \frac{1}{c} \frac{\partial A}{\partial t} \quad \text{and} \quad B = \nabla \times A. \quad (3) \]
We must find \(U^{EM} \) which is both consistent with the Euler-Lagrange Eq.(1) and with the Lorentz force (written in the \(x \) direction):
\[F_x = q(E_x + \frac{1}{c} (\dot{\mathbf{r}} \times \mathbf{B})|_x) = -\frac{\partial U^{EM}}{\partial x} + \frac{d}{dt} \left(\frac{\partial U^{EM}}{\partial \dot{x}} \right). \quad (4) \]
We note that the magnetic field terms can be evaluated:
\[\dot{\mathbf{r}} \times (\nabla \times A)|_x = \dot{y} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) - \dot{z} \left(\frac{\partial A_z}{\partial x} - \frac{\partial A_x}{\partial z} \right). \quad (5) \]
The right hand side of Eq.(5) (with the addition and subtraction of a convenient term) can be written:
\[\dot{\mathbf{r}} \cdot (\nabla \times A)|_x = \dot{y} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) - \dot{z} \left(\frac{\partial A_z}{\partial x} - \frac{\partial A_x}{\partial z} \right), \quad (6) \]
where we are assuming that \(A_x = A_x(x, y, z, t) \). Noting that \(A_x = \partial(\dot{\mathbf{r}} \cdot \mathbf{A})/\partial \dot{x} \), the electromagnetic force can thus be written:
\[F_x = -q \frac{\partial \phi}{\partial x} - \frac{q}{c} \frac{\partial A_x}{\partial t} + q \frac{\partial}{\partial t} \left(\frac{\partial (\dot{\mathbf{r}} \cdot \mathbf{A})}{\partial x} - \frac{d}{dt} \frac{\partial (\dot{\mathbf{r}} \cdot \mathbf{A})}{\partial \dot{x}} + \frac{\partial A_x}{\partial t} \right). \quad (7) \]
Simplifying this equation, we obtain
\[F_x = -\frac{\partial}{\partial x} \left(q\phi - \frac{q}{c} \dot{\mathbf{r}} \cdot \mathbf{A} \right) - \frac{d}{dt} \frac{\partial}{\partial \dot{x}} \left(\frac{q}{c} \dot{\mathbf{r}} \cdot \mathbf{A} \right). \quad (8) \]
Thus, we finally have the result
\[U^{EM} = q\phi - \frac{q}{c} \dot{\mathbf{r}} \cdot \mathbf{A}. \quad (9) \]