Announcements
1. Tests will be available Tuesday — Nov. 4th
2. Chapter 15 — fluids will be discussed on Tuesday — Nov. 4t
3. Today’s lecture —
Simple harmonic motion
Mass connected to a spring
Pendulum

Notion of resonance (not treated very well in your text)

(Note: no physics seminar this week due to Project Pumpkin)
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Behavior of materials:

Hooke’s law
F, = -k(x-x,)
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Microscopic picture of material
with springs representing bonds
between atoms

Measurement of elastic response:
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Potential energy associated with Hooke’s law:

Fs(N)

General potential energy curve:

d-U

k j—
dx?

(x=1)

U, ()
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U, =%k (x-1)?
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Motion associated with Hooke’s law forces
Newton’s second law:

F=-kx=ma

2
F=-kx=m d—;(

dt
d’x kK . o . . .
W = — X  =» “second-order” linear differential equation
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How to solve a second order linear differential equation:

Earlier example — constant force F, =» acceleration a,

d*’x F,
5 = = aO
dt m

X(t) = x, tvot + 2 a, t?

/

2 constants (initial values)
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Hooke’s law motion:

2
F =—kx:md—;(
dt
d’x Kk
T —=—X
dt? m

2 constants (1nitial values)
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Verification: (Class exercise — write out steps of this “proof™)

Differential relations:

d sin(wt + @) ——)

dt
d cos(ot + @) o)

dt

2

Therefore: e Aczst(zm t+9) = —m” Acos(ot + o)

= X(t) = Acos(ot + @) satisfies

d*x k

== LS provided that o =—
dt m m



“Simple harmonic motion” in practice

A block with a mass of 0.2 kg 1s connected to a light spring
for which the force constant 1s 5 N/m and is free to oscillate on a
horizontal, frictionless surface. The block 1s displaced 0.05 m
from equilibrium and released from rest. Find its subsequent
motion.

® = ~k/m=+/5/0.2rad/s = 5rad/s

X(t)= A cos (ot+0) x(0)=A cos (¢)=0.05m

v(t)=-Awmsin (ot+Q) v(0)=-Awsin (¢) =0 m/s
2> $=0 and A=0.05m
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Onhine Quiz for Lecture 15
Simple harmonic motion -- Oct. 30, 2003

» Suppose vou have a gpring with unknown spring constant k.

1. When vou suspend a 50 N weight vertically from the
spring, the spring stretches by 0.03 m. What can vou infer
18 the gpring constant (in units of N/m).

(a) 0.03 (b) 1.5 (¢) 30 (d) 1667 {(e) None of these.

2. If vou digplace the weight and the spring from its new
equilibrium point, what will be the frequency (in cycles pe:
second) of the osgcillations?

(a) 2.88 (b) 53.77 (¢) 18.07 (d) 166.7 (&) None of these.

3. Does it change the oscillation frequency if the weight

moves horizontally versus vertically?
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Peer instruction question:

A certain mass m on a spring oscillates with a characteristic
frequency of 2 cycles per second. Which of the following
changes to the mass would increase the frequency to 4 cycles
per second?

(a)2m  (b) 4m (c) m/2 (d) m/4
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Simple harmonic motion:

2
F =—kx:md—;(
dt

d=x K Conveniently

F ) m ' evaluated 1n
radians
X(t) = ACOS(OJt + (p); W = \/?
m
Note that: Constants
dx .
v(t) = e —Awsin(ot +¢)

a(t) = % = —Aw” cos(ot + )
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Mechanical energy associated with simple harmonic motion

E=K +U=%mVv2+%kx

E=1 m{A(o sin(ot + (p)}2 + 1 k{Acos(cot + (p)}2

= I mo°A* = I, kA®
\ ¢

2.5+

U(X/

\

A
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Simple harmonic motion for a pendulum:

10/30/2003

T=mgLsin® =

@ _

dt?

L, d’e
dt”

sm@-—%sm@ (since | =mL?)

~ mgL
I

Approximation for small ©:

siIn® = e
2
= d—? - Yo
dt L
Solution :

O(t) = Acos(ot +¢); ®= @
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Pendulum example:

O(t) = Acos(ot +¢@); o=

10/30/2003

Suppose L=2m, what 1s the
period of the pendulum?

2
w=_|2 = J%m/s 22135 rad/s = 2"
L 2m T
27
T=—=2.845s
()]

g

L
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The notion of resonance:
Suppose  F=-kx+F, sin({2t)
According to Newton:
d’x
dt’

—kx+ F, sin(Qt) =m

Differential equation ("inhomogeneous"):

0 __ Kyt Fogincan

dt’ m m
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Physics of a “driven” harmonic oscillator:

—kx + F, sin(Qt) = mﬂ
dt?
F,/m Fo/m
t— ~sin(Qt) = sin(Qt
X(t)=, 0 oS = S0 7 sin(@Q)

207

F,/m* (Mag)

w’ —Q°
(QQ=2rad/s)

-104

-20-
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S
W—_x F(t)=1 N sin (3t)

x=10

Examples:

Suppose a mass m=0.2 kg 1s attached to a spring with
k=1.81N/m and an oscillating driving force as shown
above. Find the steady-state displacement x(t).

F,/m 1/0.2
/m—Q)

sin(3t) m =100 sin(3t) m

X = sin(Qt) =

1.81/0.2-3




