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Announcements

1. Tests will be available Tuesday – Nov. 4th

2. Chapter 15 – fluids will be discussed on Tuesday – Nov. 4th

3. Today’s lecture –

Simple harmonic motion

Mass connected to a spring

Pendulum

Notion of resonance (not treated very well in your text)

(Note:  no physics seminar this week due to Project Pumpkin)
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Hooke’s law
Fs = -k(x-x0)

= x0

Behavior of materials:

Young’s modulus
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Microscopic picture of material 
with springs representing bonds 
between atoms

Measurement of elastic response:
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Potential energy associated with Hooke’s law:
F s
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Motion associated with Hooke’s law forces

Newton’s second law:

F = -k x = m a
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“second-order” linear differential equation
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How to solve a second order linear differential equation:

Earlier example – constant force F0 acceleration a0
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x(t) = x0 +v0t + ½ a0 t2

2 constants (initial values)
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Hooke’s law motion:
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Verification:    (Class exercise – write out steps of this “proof”)

Differential relations:

Therefore:
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“Simple harmonic motion” in practice

A block with a mass of 0.2 kg is connected to a light spring 
for which the force constant is 5 N/m and is free to oscillate on a 
horizontal, frictionless surface.   The block is displaced 0.05 m 
from equilibrium and released from rest.   Find its subsequent 
motion.

ω =              

x(t)= A cos (ωt+φ)              x(0) = A cos (φ) = 0.05 m

v(t)=-Aωsin (ωt+φ)               v(0)=-Aωsin (φ) = 0 m/s

φ = 0   and A = 0.05 m

5rad/srad/s2.0/5/ ==mk
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Peer instruction question:

A certain mass m on a spring oscillates with a characteristic 
frequency of 2 cycles per second.   Which of the following 
changes to the mass would increase the frequency to 4 cycles 
per second?

(a) 2m      (b) 4m        (c) m/2        (d) m/4
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Simple harmonic motion:

Note that:
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Mechanical energy associated with simple harmonic motion

E = K  + U = ½ m v2 + ½ k x2
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Simple harmonic motion for a pendulum:
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Pendulum example:
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period of the pendulum?
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The notion of resonance:

Suppose    F=-kx+F0 sin(Ωt)

According to Newton:  

)sin(

:)ous"inhomogene("equation  alDifferenti

)sin(

0
2

2

2

2

0

t
m
Fx

m
k

dt
xd

dt
xdmtFkx

Ω+−=

=Ω+−

)sin(
ω

/)sin(
/

/)(

:Solution

22
0

2
0 tmFt

mk
mFtx Ω

Ω−
≡Ω

Ω−
=



10/30/2003 PHY 113 -- Lecture 15 17
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Physics of a “driven” harmonic oscillator:

“driving” frequency

“natural” frequency
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Examples:

Suppose a mass m=0.2 kg is attached to a spring with 
k=1.81N/m and an oscillating driving force as shown 
above. Find the steady-state displacement x(t).

F(t)=1 N sin (3t)
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