Announcements

1. Exam 2 corrections - due today
2. Today's lecture

Comments of some previous HW problems
Summary of the physics of waves
The physics of sound
3. HRW6 15.F.018. [52000] The L-shaped tank shown in Fig. 15-32 is filled with water and is open at the top.

Pressure due to water:

Figure 15-32
(a) If $d=5.5 \mathrm{~m}$, what is the force on face A due to the water?
[0.133333] \square
(b) What is the force on face B due to the water?

The wave equation:

$$
\left.\begin{array}{rl}
\frac{\partial^{2} y}{\partial x^{2}}
\end{array} \quad \text { where } v=\sqrt{\frac{T}{\mu}}(\text { for a string }) ~=\sqrt{\frac{B}{\rho}}=\sqrt{\frac{\gamma P}{\rho}}(\text { for gas (air })\right)
$$

Solutions: $y(x, t)=f(x \pm v t)$ function of any shape
Examples:

$$
\begin{aligned}
& y(x, t)=y_{0} e^{-(x-v t)^{2}} \quad \text { pulse wave } \\
& y(x, t)=y_{0} \sin (k(x-v t)+\varphi) \quad \text { periodic wave }
\end{aligned}
$$

2. HRW6 17.P.014. [52087] The equation of a transverse wave on a string is

$$
y=(2.0 \mathrm{~mm}) \sin \left[\left(15 \mathrm{~m}^{-1}\right) x-\left(550 \mathrm{~s}^{-1}\right) t\right] .
$$

The tension in the string is 12 N .
(a) What is the wave speed?

(b) Find the linear density of this string in grams per meter.

$$
[0.0714286] \square \mathrm{g} / \mathrm{m}
$$

$$
y(x, t)=y_{m} \sin (k(x-v t))=y_{m} \sin (k x-\omega t)
$$

$$
v=\frac{\omega}{k}=\sqrt{\frac{T}{\mu}}
$$

Sound waves
Longitudinal waves propagating in a fluid or solid $\frac{\partial^{2} y}{\partial t^{2}}=v^{2} \frac{\partial^{2} y}{\partial x^{2}} \quad y(x, t)$ describes density or pressure variations $v=\sqrt{\frac{T}{\mu}} \Rightarrow \sqrt{\frac{B}{\rho}}\left(\sqrt{\frac{\text { compressibility }}{\text { density }}}\right)=\sqrt{\frac{\gamma P}{\rho}} \approx 343 \mathrm{~m} / \mathrm{s}$

(a)

(c)

Compressed region

(b)

(d)

Periodic sound wave
In terms of pressure:

$$
P(x, t)=P_{0}+\Delta P_{\max } \sin \left(\frac{2 \pi x}{\lambda} \pm \frac{2 \pi t}{T}\right)
$$

Sound intensity: (energy/(unit time \cdot unit area))

$$
I \equiv \frac{\left(\Delta P_{\max }\right)^{2}}{2 \rho v}
$$

Decibel scale:

$$
\beta \equiv 10 \log \left(\frac{I}{I_{0}}\right) \quad I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}
$$

Some representative values

Source	β (dB)
Lawn mower	100
Normal conversation	70
Mosquito buzzing	40
Threshold of hearing	0

Peer instruction question

Suppose that you are trying to sleep but your roommate has the stereo on at a sound level of $\beta=100$. In trying to diplomatically and accurately achieve an appropriate sound reduction, which of the following is better to request:
(A) Please reduce the stereo intensity by half.
(B) Please reduce the stereo decibel level by half.
(C) Please reduce the pressure amplitude of the sound wave produced by the stereo by half.

The sound of music

String instruments (Guitar, violin, etc.)

(a)

(b)

$f_{n}=\frac{v}{\lambda_{n}}=\frac{n v}{2 L}$

$$
v=\sqrt{\frac{T}{\mu}}
$$

$$
\lambda_{n}=\frac{2 L}{n}
$$

$$
\text { (no sound yet.....) } \quad y_{\text {standing }}(x, t)=2 y_{0} \sin \left(\frac{2 \pi x}{\lambda}\right) \cos \left(\frac{2 \pi t}{T}\right)
$$

Peer instruction question

Suppose you pluck the "A" guitar string whose fundamental frequency is $f=440$ cycles $/ \mathrm{s}$. The string is 0.5 m long so the wavelength of the standing wave on the string is $\lambda=1 \mathrm{~m}$. Assuming the speed of sound is $343 \mathrm{~m} / \mathrm{s}$, what is the wavelength of the sound wave which is produced?
$\begin{array}{lll}\text { (A) } 1 \mathrm{~m} & \text { (B) } 0.78 \mathrm{~m} & \text { (C) } 1.28 \mathrm{~m}\end{array}$

"Wind" instruments (standing waves in air)

observer moving, source stationary
Serway, Physics for Scientists and Engineers, 5/e
Figure 17.10

$$
\begin{aligned}
& v t_{1}=d-v_{o} t_{1} \\
& v\left(t_{2}-T\right)=d-v_{o} t_{2} \\
& t_{2}-t_{1}=\frac{1}{f_{0}}=T \frac{v}{v+v_{o}} \\
& f_{o}=f_{s} \frac{v+v_{0}}{v}
\end{aligned}
$$

Harcourt, Inc.

The "Doppler" effect
observer stationary, source moving
Serway, Physics for Scientists and Engineers, 5/e Figure 17.11a

(a)
$v=$ sound velocity

$$
\begin{aligned}
& v t_{1}=d \\
& v\left(t_{2}-T\right)+v_{S} T=d \\
& t_{2}-t_{1}=\frac{1}{f_{0}}=T \frac{v-v_{S}}{v} \\
& f_{0}=f_{s} \frac{v}{v-v_{s}}
\end{aligned}
$$

Summary:

$f_{o}=f_{s} \frac{v \pm v_{o}}{v \widetilde{F}_{v_{s}}}$ away

The figure on the left shows a car traveling at a velocity v_{O} being followed by a police car traveling at a velocity $v_{S}=30 \mathrm{~m} / \mathrm{s}$. The police car has a siren at frequency $f_{S}=950$ cycles/s. The observer in the front car hears the siren at a frequency of $f_{O}=920$ cycles $/ \mathrm{s}$.
(a) Is the front car moving faster or slower than the police car?
(b) What is the velocity of the front car v_{0} ?
$f_{o}=f_{s} \frac{v \pm v_{o}}{v \mp v_{s}}$ away
Velocity of sound:

$$
v=343 \mathrm{~m} / \mathrm{s}
$$

Peer instruction question

Is Doppler radar described by the equations given above for sound Doppler?
(A) yes (B) no

Is "ultra sound" subject to the sound form of the Doppler effect?
(A) yes
(B) no

Summary of sound Doppler effect:
 $f_{0}=v \pm v_{0}$ toward
 $v \widehat{+v_{s}}$ away

Doppler effect for electromagnetic waves:

$$
f_{o}=f_{S} \sqrt{\frac{v+v_{R}}{v-v_{R}}} \quad \begin{aligned}
& \text { Relative velocity of } \\
& \text { source toward observer }
\end{aligned}
$$

