Announcements

- 1. Tutorial schedule
- 2. Office hours

- 3. WebAssign problem sets due 9/4/03 at 11:59 PM. Extensions available upon request. (send email to <u>natalie@wfu.edu</u>)
- 4. Labs start this week bring your lap tops to lab
- 5. Today's lecture Chapt. 2 1 dimensional motion Displacement

Velocity

Acceleration

6. For Thursday – start reading Chapt. 3

PHY 113 Tutoring Schedule

Sunday	Monday	Tuesday	Wednesday	Thurday				
	4-6 PM (for Salsbury)		4-6 PM (for Holzwarth)					
7-9 PM (for Guthold)	7-9 PM (for Holzwarth)	7-9 PM (for Guthold)	7-9 PM (for Salsbury)	7-9 PM (for Guthold)				
Tutors:								
Jay Kumar (kumaj2@wfu.edu) Rm. 107 Yonas Abraham (abray00g@wfu.edu)								
Andrew Shelton (shelwa@@wfu.edu) Matt Rave (ravemj1@wfu.edu)								
9/2/2003	9/2/2003 PHY 113 Lecture 2 2							

Fall 2003 Schedule for N. A. W. Holzwarth

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
8:00-9:30	Lecture	Lecture preparation	Lecture preparation	Lecture preparation	Lecture preparation	
9:30-10:45	preparation	PHY 113		PHY 113		
11:00-12:00	PHY 741	Faculty Mtg	PHY 741	Office hours	PHY 741	Dhuaioa
12:00-1:00	Office hours	Office hours	Office hours	Physics Research	Office hours	Research
1:00 -3:30	Physics Research	Physics Research	Physics Research		Physics Research	
3:30-5:00				Physics seminar		

What we will learn today:

1. Displacement
$$x(t) = \int_0^t dt \, v(t') = \int_0^t dt \, \int_0^t dt \, a(t'')$$

2. Velocity $v(t) = \frac{dx(t)}{dt} = \int_0^t dt \, a(t')$
3. Acceleration $a(t) = \frac{dv(t)}{dt}$

Special case of constant acceleration: a(t) = a0(assume that initial time is t=0s) v(t) = v0 + a0 t $x(t) = x0 + v0 t + \frac{1}{2} a0 t2 = x0 + \frac{1}{2} (v0 + v(t)) t$ (v(t))2 = (v0)2 + 2 a0 (x(t) - x0)

PHY 113 -- Lecture 2

9/2/2003

Peer instruction question

Suppose you are jogging at constant speed ($v_{you} = 8 \text{ mi/h}$) around a circular track while I am jogging at constant speed around the same track ($v_{me} = 4 \text{ mi/h}$). In the time that it takes you to go around the track once, how many times will I go around the track?

A. ¹/₂ B. 1 C. 2 D. 4

Displacement (position) versus time x(t)

- 1. Table (schedule)
- 2. Graph
- 3. Analytic formula

Example:

1. Tablular form

Time	Position		
9:35 AM	0 m (Reynolda Hall)		
9:40	40 m (Benson)		
9:45	50 m (Library)		
9:50	70 m (Olin)		

Velocity – rate of change in displacement Instantaneous velocity: $v(t) = \frac{dx}{dt}$

Instantaneous acceleration – rate of change in velocity

$$\mathbf{a}(\mathbf{t}) = \frac{dv}{dt}$$

Summary of key concepts

1. Displacement
$$x(t) = \int_0^t dt' v(t') = \int_0^t dt' \int_0^{t'} dt'' a(t'')$$

2. Velocity
$$v(t) = \frac{dx(t)}{dt} = \int_0^t dt' a(t')$$

3. Acceleration a(t)

$$u(t) = \frac{dv(t)}{dt}$$

Review of Online Quiz for Lecture 2 Motion in One Dimension -- Sept. 2, 2003

- Suppose that you have 2 minutes before class begins and you are 300 *m* from Olin 101. What is should be your average velocity (in *m/s*) in order to get to class on time?
 (a) 150 (b) 15 (c) 5 (d) 2.5 (e) 1
- 2. Suppose you begin and end your trip at rest (v=0 m/s) and have a constant acceleration *a* for 1 minute followed by a constant negative acceleration -*a* for 1 minute. What is the value of *a* in *m/s2*?

(a) 15 (b) 5 (c) 2.5 (d) 0.3333 (e) 0.0833

3. What is your maximum velocity (in *m/s*) during the trip?
(a) 150 (b) 15 (c) 5 (d) 2.5 (e) 1

Graphical representations

13

"O.K., there's the sun, so that direction is 'up.' " $\,$

From: **The New Yorker**, Sept. 2, 2002 _{9/2/2003} - Lecture 2

Graphical representations:

PHY 113 -- Lecture 2

9/2/2003

Special case of constant acceleration: $a(t) = a_0$

(assume that initial time is t=0s)

 $v(t) = v_0 + a_0 t$ $x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2 = x_0 + \frac{1}{2} (v_0 + v(t)) t$ $(v(t))^2 = (v_0)^2 + 2 a_0 (x(t) - x_0)$

Peer instruction question

Suppose you are driving on a level road at a speed of $v_0=60mi/h=26.8m/s$,

when you notice an object in the road ahead of you. If you step on the breaks immediate and achieve a constant deceleration of

 $a=-4.9m/s^2$, you will find that you travel a distance Δx_0 before coming to a complete stop. Now suppose that your initial speed was only $v_1=30mi/h=13.4m/s$, the deceleration is the same and the braking distance is Δx_1 .

What is $\Delta x_{1/} \Delta x_0$?

(a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) 1 (d) 2 $\frac{9}{2}{2003}$ PHY 113 -- Lecture 2 Sample problem:

Suppose a fiend is standing on top of a tall building (h=200 m). At t=0s, he drops a precious urn which then has a constant downward accelerations of a=9.8m/s². At t=2s, Rocket Man arrives for the rescue. He dives off the building (initial downward velocity of 0), fires his rocket, and saves the urn.

- 1. If Rocket Man disregards his own safety and the rocket acceleration is constant, what must that acceleration be?
- 2. If Rocket Man catches the urn at 100 m and then decelerates, what are the accelerations and decelerations of his rocket (assuming both are constant).

- 3. Problem solving steps
 - 1. Visualize problem labeling variables
 - 2. Determine which basic physical principle applies
 - 3. Write down the appropriate equations using the variables defined in step 1.
 - 4. Check whether you have the correct amount of information to solve the problem (same number of knowns and unknowns.
 - 5. Solve the equations.
 - 6. Check whether your answer makes sense (units, order of magnitude, etc.).