Announcements

1. Please bring your laptops to lab this week.
2. Physics seminar this week - Thursday, Nov. 20 at 4 PM Professor Brian Matthews will discuss relationships between protein structure and function
3. Schedule -

Today, Nov. $18^{\text {th }}$: Examine $E_{\text {int }}$ especially for ideal gases
Discuss ideal gas law
Continue discussion of first law of thermodynamics
Thursday, Nov. 20 ${ }^{\text {th }}$: Review Chapters 15-20
Tuesday, Nov. 25 ${ }^{\text {th }}$: Third exam

From The New Yorker Magazine, November 2003

First law of thermodynamics

$$
\Delta \mathrm{E}_{\mathrm{int}}=\mathrm{Q}-\mathrm{W}
$$

$$
W=\int_{V_{i}}^{V_{f}} P d V
$$

For an "ideal gas" we can write an explicit relation for $\mathrm{E}_{\text {int }}$. What we will show:

$$
E_{\text {int }}^{(\text {ideal gas })}=\frac{n}{\gamma-1} R T=\frac{N}{\gamma-1} k_{B} T
$$

γ is a parameter which depends on the type of gas (monoatomic, diatomic, etc.) which can be measured as the ratio of two heat capacities: $\gamma=\mathrm{C}_{\mathrm{P}} / \mathrm{C}_{\mathrm{V}}$.

Thermodynamic statement of conservation of energy -
First Law of Thermodynamics

Heat added to system
$\mathbf{Q}_{\text {if }}$ depends on path
"Internal" energy of system
$\Delta \mathrm{E}_{\text {int }}=\mathrm{E}_{\text {int }}(f)-\mathrm{E}_{\text {int }}(i) \rightarrow$ independent on path

How is temperature related to $\mathrm{E}_{\text {int }}$?

Consider an ideal gas
\rightarrow Analytic expressions for physical variables
\rightarrow Approximates several real situations

Ideal gas - P-V diagram at constant T

The diagram above shows a process in which one mole of an ideal gas expands and contracts between volumes $V_{1}=1 \mathrm{~m}^{3}$ and $\mathrm{V}_{2}=2 \mathrm{~m}^{3}$ pressures $\mathrm{P}_{1}=101300 \mathrm{~Pa}$ and $\mathrm{P}_{2}=202600 \mathrm{~Pa}$.

1. At what point does the system have the highest temperature? (a) A (b) B (c) C (d) D
2. For which steps does the system do positive work? (a) $A->B$ (b) $B->C$ (c) $C->D$ (d) $D->A$
3. For which steps does the system do negative work? (a) $A->B$ (b) $B->C$ (c) $C->D$ (d) $D->A$
4. For which steps does the system do no work? (a) $A->B$ (b) $B->C$ (c) $C->D$ (d) $D->A$

Microscopic model of ideal gas:
Each atom is represented as a tiny hard sphere of mass m with velocity \mathbf{v}. Collisions and forces between atoms are neglected. Collisions with the walls of the container are assumed to be elastic.

What we can show is the pressure exerted by the atoms by their collisions with the walls of the container is given by:

$$
P=\frac{2}{3} \frac{N}{V} 1 / 2 m\left\langle v^{2}\right\rangle_{a v g}=\frac{2}{3} \frac{N}{V}\langle K\rangle_{a v g}
$$

Proof:

Force exerted on wall perpendicular to x -axis by an atom which collides with it:

$$
\begin{aligned}
& F_{i x}=-\frac{\Delta p_{i x}}{\Delta t}=\frac{2 m_{i} v_{i x}}{\Delta t} \quad \Delta t \approx 2 d / v_{i x} \\
& \Rightarrow F_{i x} \approx \frac{2 m_{i} v_{i x}}{2 d / v_{i x}}=\frac{m_{i} v_{i x}^{2}}{d} \\
& P=\sum_{i} \frac{F_{i x}}{A}=\sum_{i} \frac{m_{i} v_{i x}^{2}}{d A}=\frac{N}{\text { volume }}\left\langle\frac{v_{i x}}{V}\left\langle m_{i} v_{x}^{2}\right\rangle\right. \\
& \text { average over atoms atoms }
\end{aligned}
$$

Ideal gas law continued:
Recall that Macroscopic relation: $P V=n R T=N \frac{R}{N_{A}} T=N k_{B} T$
Microscopic model: $P V=\frac{2}{3} N\left\{\frac{1}{2} m\left\langle v^{2}\right\rangle\right\}=N k_{B} T$
Therefore: $\left\{\frac{1}{2} m\left\langle v^{2}\right\rangle\right\}=\frac{3}{2} k_{B} T$

$$
\Rightarrow v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle}=\sqrt{\frac{3 k_{B} T}{m}}
$$

Also:

$$
\begin{aligned}
& \left\{\frac{1}{2} m\left\langle v^{2}\right\rangle\right\}=\frac{3}{2} k_{B} T \\
& \Rightarrow E_{\text {int }}=N\left\{\frac{1}{2} m\left\langle v^{2}\right\rangle\right\}=N \frac{3}{2} k_{B} T
\end{aligned}
$$

Internal energy of an ideal gas:
Big leap!
 ideal gas
more general relation for polyatomic ideal gas

Gas	γ (theory)	$\boldsymbol{\gamma}$ (exp)
He	$5 / 3$	1.67
$\mathrm{~N}_{2}$	$7 / 5$	1.41
$\mathrm{H}_{2} \mathrm{O}$	$4 / 3$	1.30

Determination of Q for various processes in an ideal gas:

$$
\begin{aligned}
& E_{\text {int }}=\frac{n}{\gamma-1} R T \\
& \Delta E_{\text {int }}=\frac{n}{\gamma-1} R \Delta T=Q-W
\end{aligned}
$$

Example: Isovolumetric process $-(\mathrm{V}=$ constant $\rightarrow \mathrm{W}=0)$

$$
\Delta E_{\text {int } i \rightarrow f}=\frac{n}{\gamma-1} R \Delta T_{i \rightarrow f}=Q_{i \rightarrow f}
$$

In terms of "heat capacity": $Q_{i \rightarrow f}=\frac{n}{\gamma-1} R \Delta T_{i \rightarrow f} \equiv n C_{V} \Delta T_{i \rightarrow f}$

$$
C_{V}=\frac{R}{\gamma-1}
$$

Example: Isobaric process ($\mathrm{P}=$ constant):

$$
\Delta E_{\mathrm{int} i \rightarrow f}=\frac{n}{\gamma-1} R \Delta T_{i \rightarrow f}=Q_{i \rightarrow f}-W_{i \rightarrow f}
$$

In terms of "heat capacity":

$$
\begin{gathered}
Q_{i \rightarrow f}=\frac{n}{\gamma-1} R \Delta T_{i \rightarrow f}+P_{i}\left(V_{f}-V_{i}\right)=\frac{n}{\gamma-1} R \Delta T_{i \rightarrow f}+n R \Delta T_{i \rightarrow f} \equiv n C_{P} \Delta T_{i \rightarrow f} \\
\Rightarrow C_{P}=\frac{R}{\gamma-1}+R=\frac{\gamma R}{\gamma-1}
\end{gathered}
$$

$$
\text { Note: } \gamma=\mathrm{C}_{\mathrm{P}} / \mathrm{C}_{\mathrm{V}}
$$

More examples:
Isothermal process $(\mathrm{T}=0)$

$$
\begin{aligned}
E_{\text {int }} & =\frac{n}{\gamma-1} R T \\
\Delta E_{\text {int }} & =\frac{n}{\gamma-1} R \Delta T=Q-W
\end{aligned}
$$

$\rightarrow \Delta \mathrm{T}=0 \rightarrow \Delta \mathrm{E}_{\text {int }}=0 \rightarrow \mathrm{Q}=\mathrm{W}$

$$
W=\int_{V_{i}}^{V_{f}} P d V=n R T \int_{V_{i}}^{V_{f}} \frac{d V}{V}=n R T \ln \left(\frac{V_{f}}{V_{i}}\right)
$$

Even more examples:

Adiabatic process $(\mathrm{Q}=0)$

$$
\begin{aligned}
& \Delta E_{\text {int }}=-W \\
& \frac{n}{\gamma-1} R \Delta T=-P \Delta V \\
& P V=n R T \\
& \Delta P V+P \Delta V=n R \Delta T \\
& n R \Delta T=-(\gamma-1) P \Delta V=\Delta P V+P \Delta V \\
& -\gamma \frac{\Delta V}{V}=\frac{\Delta P}{P} \\
& \Rightarrow-\ln \left(\frac{V_{f}^{\gamma}}{V_{i}^{\gamma}}\right)=\ln \left(\frac{P_{f}}{P_{i}}\right) \Rightarrow P_{i} V_{i}^{\gamma}=P_{f} V_{f}^{\gamma}
\end{aligned}
$$

(a)

Adiabat: $P=\frac{P_{i} V_{i}^{\gamma}}{V^{\gamma}}$
Isotherm : $P=\frac{P_{i} V_{i}}{V}$

(b)

Peer instruction question

Suppose that an ideal gas expands adiabatically. Does the temperature
(A) Increase (B) Decrease (C) Remain the same

$$
\begin{aligned}
& P_{i} V_{i}^{\gamma}=P_{f} V_{f}^{\gamma} \\
& P_{i} V_{i}=n R T_{i} \Rightarrow P_{i}=n R \frac{T_{i}}{V_{i}} \\
& T_{i} V_{i}^{\gamma-1}=T_{f} V_{f}^{\gamma-1} \\
& T_{f}=T_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma-1}
\end{aligned}
$$

Review of results from ideal gas analysis in terms of the specific heat ratio $\gamma \equiv \mathrm{C}_{\mathrm{P}} / \mathrm{C}_{\mathrm{V}}$:

$$
\begin{aligned}
& \Delta E_{\text {int }}=\frac{n}{\gamma-1} R \Delta T=n C_{V} \Delta T ; C_{V}=\frac{R}{\gamma-1} \\
& C_{P}=\frac{\gamma R}{\gamma-1}
\end{aligned}
$$

For an isothermal process, $\Delta \mathrm{E}_{\text {int }}=0 \rightarrow \mathrm{Q}=\mathrm{W}$

$$
W=\int_{V_{i}}^{V_{f}} P d V=n R T \ln \left(\frac{V_{f}}{V_{i}}\right)=P_{i} V_{i} \ln \left(\frac{V_{f}}{V_{i}}\right)
$$

For an adiabatic process, $\mathrm{Q}=0$

$$
\begin{gathered}
P_{i} V_{i}^{\gamma}=P_{f} V_{f}^{\gamma} \\
T_{i} V_{i}^{\gamma-1}=T_{f} V_{f}^{\gamma-1}
\end{gathered}
$$

Extra credit:

Show that the work done by an ideal gas which has an initial pressure P_{i} and initial volume V_{i} when it expands adiabatically to a volume V_{f} is given by:

$$
W=\int_{V_{i}}^{V_{f}} P d V=\frac{P_{i} V_{i}}{\gamma-1}\left(1-\left(\frac{V_{i}}{V_{f}}\right)^{\gamma-1}\right)
$$

Peer instruction questions

Match the following types of processes of an ideal gas with their corresponding $\mathrm{P}-\mathrm{V}$ relationships, assuming the initial pressures and volumes are P_{i} and V_{i}, respectively.

1. Isothermal
2. Isovolumetric
3. Isobaric
4. Adiabatic
(A) $\mathrm{P}=\mathrm{P}_{\text {i }}$
(B) $\mathrm{V}=\mathrm{V}_{\mathrm{i}}$
(C) $\mathrm{PV}=\mathrm{P}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}$
(D) $\mathrm{PV}^{\gamma}=\mathrm{P}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}{ }^{\gamma}$

Examples process by an ideal gas:

	$\mathrm{A} \rightarrow \mathrm{B}$	$\mathrm{B} \rightarrow \mathrm{C}$	$\mathrm{C} \rightarrow \mathrm{D}$	$\mathrm{D} \rightarrow \mathrm{A}$
Q	$\frac{V_{i}\left(P_{f}-P_{\mathrm{i}}\right)}{\gamma-1}$	$\frac{\gamma P_{f}\left(V_{f}-V_{\mathrm{i}}\right)}{\gamma-1}$	$\frac{-V_{f}\left(P_{f}-P_{i}\right)}{\gamma-1}$	$\frac{-\gamma P_{i}\left(V_{f}-V_{i}\right)}{\gamma-1}$
W	0	$\mathrm{P}_{\mathrm{f}}\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right)$	0	$-\mathrm{P}_{\mathrm{i}}\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right)$
$\Delta \mathrm{E}_{\text {int }}$	$\frac{V_{i}\left(P_{f}-P_{\mathrm{i}}\right)}{\gamma-1}$	$\frac{P_{f}\left(V_{f}-V_{\mathrm{i}}\right)}{\gamma-1}$	$\frac{-V_{f}\left(P_{f}-P_{i}\right)}{\gamma-1}$	$\frac{-P_{i}\left(V_{f}-V_{i}\right)}{\gamma-1}$

Efficiency as an engine:
5. HRW6 20.P061.NH [306369] One mole of an ideal monatomic gas traverses the cycle of Fig. 20-24. Process 1-->2 occurs at constant volume, process $2->3$ is adiabatic, and process $3->1$ occurs at constant pressure.

Figure 20-24.
(a) Compute the heat Q, the change in internal energy $\Delta \mathrm{E}_{\text {int }}$, and the work done W , for each of the three processes and for the cycle as a whole.

For 1-->2: $\mathrm{Q}=[0.0769231]$	$\mathbf{J} \Delta \mathrm{E}_{\text {int }}=[0.0769231]$	$\mathrm{J} \mathrm{W}=[0.0769231]$
For 2-->3: $\mathrm{Q}=[0.0769231]$	$\mathrm{J} \Delta \mathrm{E}_{\text {int }}=[0.0769231]$	$\mathrm{J} \mathbf{W}=[0.0769231]$
For 3-->1: Q = [0.0769231]	$\mathrm{J} \Delta \mathrm{E}_{\text {int }}=[0.0769231]$	$\mathrm{J} \mathrm{W}=[0.0769231]$
For cycle: $\mathrm{Q}=[0.0769231]$	$\mathbf{J} \Delta \mathrm{E}_{\text {int }}=[0.0769231]$	J W $=[0.0769231]$

(b) The initial pressure at point 1 is 1.00 atm . Find the pressure and the volume at points 2 and 3 . Use 1.00 $\mathrm{atm}=1.013 \times 10^{5} \mathrm{~Pa}$ and $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{molK}$.
$\begin{array}{ll}\text { At point } 2: \mathrm{P}=[0.0769231] \square & \mathrm{Pa} \mathrm{V}=[0.0769231] \square \\ \text { At point 3: } \mathrm{P}=[0.0769231] \square & \mathrm{Pa} \mathrm{V}=[0.0769231] \square \mathrm{m}^{3} \\ & \mathrm{~m}^{3}\end{array}$

