Announcements

- 1. 3rd exam
 Redo due Thursday, Dec. 4th
 Presentations for Exam 3 (or 1 or 2) ???
 if ?? when?? how many??
- 2. Final exam, Wednesday, Dec. 10th
 Extra problem solving sessions??
 if ?? when?? how many??
- 3. Physics colloquium Thursday, Dec. 4th at 4 PM

Professor Scott Wollenwebber, WFU School of Medicine -- "Positron Emission Tomography: From Basic Physics to Functional Images"

4. Today's lecture – analysis of thermodynamic processes Efficiency of a thermodynamic process Carnot, Otto, Diesel processes Notion of entropy

Review of thermodynamic ideas

"First law" of thermodynamics: $\Delta E_{int} = Q - W$

For an ideal gas: PV = nRT

$$\Delta E_{\text{int}} = \frac{n}{\gamma - 1} R \Delta T = nC_V \Delta T \quad ; \quad C_V = \frac{R}{\gamma - 1}, \quad \text{where: } \gamma = \frac{C_P}{C_V}$$
Special cases: Isovolumetric (V=constant) $\rightarrow W = 0$

Isobaric (P=constant)
$$\rightarrow$$
 $C_P = \frac{\gamma R}{\gamma - 1}$

Isothermal process (T=constant)
$$\Rightarrow \Delta E_{int} = 0$$

$$W = \int_{V_f} P dV = nRT \ln \left(\frac{V_f}{V_i} \right) = P_i V_i \ln \left(\frac{V_f}{V_i} \right)$$
Adiabatic process (Q = 0)

$$P_i V_i^{\gamma} = P_f V_f^{\gamma} \qquad \qquad T_i V_i^{\gamma ext{-}1} = T_f V_f^{\gamma ext{-}1}$$

Extra credit:

Show that the work done by an ideal gas which has an initial pressure P_i and initial volume V_i when it expands *adiabatically* to a volume V_f is given by:

$$W = \int_{V_i}^{V_f} P dV = \frac{P_i V_i}{\gamma - 1} \left(1 - \left(\frac{V_i}{V_f} \right)^{\gamma - 1} \right)$$

Examples process by an ideal gas:

 $V_{\rm f}$

Efficiency as an engine:

$$e = W_{net}/Q_{input}$$

12/2/2003

 V_i

PHY 113 -- Lecture 21

Otto cycle:

$$Q_{AB}=0$$

$$Q_{BC} = \frac{V_2(P_C - P_B)}{\gamma - 1}$$

$$Q_{CD} = 0$$

$$Q_{DA} = \frac{-V_1(P_D - P_A)}{\gamma - 1}$$

$$P_A V_1^{\gamma} = P_B V_2^{\gamma};$$

$$P_D V_1^{\gamma} = P_C V_2^{\gamma}$$

$$e = \frac{Q_{BC} + Q_{DA}}{Q_{BC}} = 1 + \frac{Q_{DA}}{Q_{BC}} = 1 - \frac{V_1(P_D - P_A)}{V_2(P_C - P_B)}$$

$$\Rightarrow e = 1 - \frac{1}{\left(V_1 / V_2\right)^{\gamma - 1}}$$

Example: r=5, $\gamma=1.4$

e = 0.475

Diesel cycle

$$Q_{AB}=0$$

$$Q_{BC} = \frac{\gamma P_B (V_C - V_B)}{\gamma - 1}$$

$$Q_{CD}=0$$

$$Q_{DA} = \frac{-V_D(P_D - P_A)}{\gamma - 1}$$

$$e = 1 - \frac{1}{\gamma} \left(\frac{\left[\frac{1}{V_D/V_C} \right]^{\gamma} - \left[\frac{1}{V_A/V_B} \right]^{\gamma}}{\left[\frac{1}{V_D/V_C} \right] - \left[\frac{1}{V_A/V_B} \right]} \right)$$

Example:
$$V_D/V_C=5$$
, $V_A/V_B=15$, $\gamma=1.4$ $e=0.558$

Stirling engine

P

	А→В	В→С	C→D	D→A
Q	$nRT_h \ln \left(\frac{V_B}{V_A} \right)$	$-\frac{nR(T_h-T_c)}{\gamma-1}$	$-nRT_c \ln \left(\frac{V_C}{V_D}\right)$	$\frac{nR(T_h - T_c)}{\gamma - 1}$
W	$nRT_h \ln \left(\frac{V_B}{V_A} \right)$		$-nRT_c \ln \left(\frac{V_C}{V_D} \right)$	
$\Delta \mathrm{E}_{\mathrm{int}}$	0	$-\frac{nR(T_h-T_c)}{\gamma-1}$	0	$\frac{nR(T_h - T_c)}{\gamma - 1}$

Example:

$$T_{h} = 3T_{c} \quad V_{B} = V_{C} = 5V_{A} = 5V_{D} \quad \gamma = 1.3$$

$$e = \frac{nR(T_{h} - T_{c})\ln(V_{B}/V_{A})}{nRT_{h}\ln(V_{B}/V_{A}) + \frac{nR(T_{h} - T_{c})}{\gamma - 1}} = 50.6\%$$

$$e_{\text{Carnot}} = 66.7\%$$

Carnot process

12/2/2003

PHY 113 -- Lecture 21

Carnot cycle

	A→B	В→С	C→D	D→A
Q	$nRT_h \ln \left(\frac{V_B}{V_A} \right)$	0	$-nRT_c \ln \left(\frac{V_C}{V_D}\right)$	0
	$nRT_h \ln \left(\frac{V_B}{V_A} \right)$	$\frac{nR(T_h - T_c)}{\gamma - 1}$	$-nRT_c \ln \left(\frac{V_C}{V_D}\right)$	$-\frac{nR(T_h - T_c)}{\gamma - 1}$
ΔE_{int}	0	$-\frac{nR(T_h-T_c)}{\gamma-1}$	0	$\frac{nR(T_h - T_c)}{\gamma - 1}$

$$e = \frac{Q_{AB} + Q_{CD}}{Q_{AB}}$$

$$= 1 - \frac{T_c}{T_h} \frac{\ln(V_D / V_C)}{\ln(V_B / V_A)}$$

$$= 1 - \frac{T_c}{T_h}$$

Carnot cycle

$$Q_{AB} = nRT_H \ln \left(\frac{V_B}{V_A}\right)$$

$$Q_{BC} = 0$$

$$Q_{CD} = -nRT_C \ln \left(\frac{V_C}{V_D} \right)$$

$$Q_{DA} = 0$$

$$e = \frac{Q_{AB} + Q_{CD}}{Q_{AB}} = 1 - \frac{T_C}{T_H}$$

Examples

Efficiency of a Carnot engine operating between the temperatures of T_c =0°C and T_h =100°C:

$$e = 1 - \frac{273.15}{373.15} = 26.8\%$$

→ For a Carnot engine, it is clear that we cannot achieve e=100%; not possible to completely transform heat into work. It is possible to show that the Carnot engine is the most efficient that one can construct between the two operating temperatures T_c and T_h .

Carnot cycle for cooling and heating

"coefficient of performance"

$$COP_{heating} = |Q_h/W| = T_h/(T_h-T_c)$$

$$COP_{cooling} = |Q_c/W| = T_c/(T_h - T_c)$$

Example: Suppose that on a cold winter day, a heat pump has a compressor which brings outdoor air at T_c =-3°C into a room at T_h =22°C. What is the COP?

More about Carnot cycle

Define entropy:

$$S_{AB} = \int_{A}^{B} \frac{dQ}{T}$$

$$S_{CD} = -nR \ln \left(\frac{V_B}{V_A} \right)$$

$$S_{DA} = 0$$

Carnot cycle shown in a T-S diagram:

16

Other examples of entropy calculations:

Ideal gas:

Isovolumetric process:

$$dQ = nC_V dT = \frac{nR}{\gamma - 1} dT$$

$$S = \frac{nR}{v-1} \int_{A}^{B} \frac{dT}{T} = \frac{nR}{v-1} \ln \left(\frac{T_B}{T_A} \right)$$

$$dQ = nC_P dT = \frac{\gamma nR}{\gamma - 1} dT$$

$$S = \frac{nR}{\gamma - 1} \int_{A}^{B} \frac{dT}{T} = \frac{nR}{\gamma - 1} \ln \left(\frac{T_{B}}{T_{A}} \right) \qquad S = \frac{\gamma nR}{\gamma - 1} \int_{A}^{B} \frac{dT}{T} = \frac{\gamma nR}{\gamma - 1} \ln \left(\frac{T_{B}}{T_{A}} \right)$$

Melting of solid having mass m and latent heat L at melting temperature T_M :

$$S = \int_{0}^{m} \frac{Ldm}{T} = \frac{Lm}{T_{M}}$$

Peer instruction question:

Consider the "square cycle" shown below. What can you say about the entropy change in each cycle:

$$(A) S_{ABCDA} = 0$$

$$(B) S_{ABCDA} > 0$$

$$(C) S_{ABCDA} < 0$$

Online Quiz for Lecture 21 Entropy -- Dec. 2, 2003

Suppose that you have 1 kg of ice at temperature 273.16 K. What would be the change in entropy if the ice were completely melted to water at 273.16 K?

(a) 1.219 J/K (b) 1219 J/K (c) 333000 J/K (d) 2256000 J/K

4. HRW6 21.P.023. [52279] A Carnot engine operates between 226°C a cycle at the higher temperature.	and <mark>126°</mark> C, absorbing 6.30 × 10 ⁴ J per
(a) What is the efficiency of the engine?	

[.1] %

(b) How much work per cycle is this engine capable of performing?

[.1]

6. HRW6 21.P.048. [52282] An inventor claims to have invented four engines, each of which operates between constant-temperature reservoirs at 400 and 300 K. Data on each engine, per cycle of operation, are:

engine A,
$$Q_{\rm H} = 200$$
 J, $Q_{\rm L} = -175$ J, and $W = 40$ J;
engine B, $Q_{\rm H} = 500$ J, $Q_{\rm L} = -200$ J, and $W = 400$ J;
engine C, $Q_{\rm H} = 600$ J, $Q_{\rm L} = -200$ J, and $W = 400$ J;
engine D, $Q_{\rm H} = 100$ J, $Q_{\rm L} = -90$ J, and $W = 10$ J.

Of the first and second laws of thermodynamics, which (if either) does each engine violate?

engine A	engine C
C both C neither C second law C first law [.1]	O neither O second law O first law O both [.1]
engine B C second law C both C first law C neither [.1]	engine D O both O first law O second law O neither [.1]

5. HRW6 21.P.029. [52280] One mole of an ideal monatomic gas is taken through the cycle shown in Fig. 21-24.

Assume that $p = 2p_0$, $V = 2V_0$, $p_0 = 1.03 \times 10^5$ Pa, and $V_0 = 0.0227$ m³.

Figure 21-24.

(a) Calculate the work done during the cycle.

- [.1] [2340] J
- (b) Calculate the energy added during stroke abc.
- [.1] [15200] J
- (c) Calculate the efficiency of the cycle.
- [.1] [15.4]%

(d) What is the efficiency of an ideal engine operating between the highest and lowest temperatures that occur in the cycle?

[.1] [75]%

How does this compare to the efficiency calculated in (c)?