Announcements

1. Tentatively changed schedule; postponing first exam Tuesday, Sept. 30 ${ }^{\text {th }}$
2. HW 1 and HW 2 WebAssign sets due today before midnight
3. Summary of 1-dimensional motion relationships
4. Today's lecture - vectors
a. What are they and what do they have to do with us?
b. How to combine them - adding and subtracting
c. How to multiply them \& why would we want to

Displacement, velocity, and acceleration:

1. Displacement $x(t)=\int_{0}^{t} d t^{\prime} v\left(t^{\prime}\right)=\int_{0}^{t} d t^{\prime} \int_{0}^{t^{\prime}} d t^{\prime \prime} a\left(t^{\prime \prime}\right)$
2. Velocity $v(t)=\frac{d x(t)}{d t}=\int_{0}^{t} d t^{\prime} a\left(t^{\prime}\right)$
3. Acceleration $a(t)=\frac{d v(t)}{d t}$

Special case of constant acceleration: $a(t)=a_{0}$
(assume that initial time is $t=0 \mathrm{~s}$)

$$
\begin{aligned}
& v(t)=v_{0}+a_{0} t \\
& x(t)=x_{0}+v_{0} t+1 / 2 a_{0} t^{2}=x_{0}+1 / 2\left(v_{0}+v(t)\right) t \\
& (v(t))^{2}=\left(v_{0}\right)^{2}+2 a_{0}\left(x(t)-x_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& v(t)=v_{0}+a_{0} t \\
& x(t)=x_{0}+v_{0} t+1 / 2 a_{0} t^{2}=x_{0}+1 / 2\left(v_{0}+v(t)\right) t \\
& (v(t))^{2}=\left(v_{0}\right)^{2}+2 a_{0}\left(x(t)-x_{0}\right)
\end{aligned}
$$

5. HRWB 2.P.029. [52220] An electron with intitial velocity $v_{0}=1.3 \times 10^{5} \mathrm{~m} / \mathrm{s}$ enters a region 1.0 cm long where it is electrically accelerated (Fig. 2-25). It emerges with velocity $v=5.90 \times 10^{6} \mathrm{~m} / \mathrm{s}$. What was its acceleration, assumed constant? (Such a process occurs in the electron gun in a cathode-ray tube, used in television receivers and oscilloscopes.)
$[0.0952381] \square \mathrm{m} / \mathrm{s}^{2}$

Nonaccelerating Accelerating
region

Figure 2-25

$$
\begin{aligned}
& v(t)=v_{0}+a_{0} t \\
& x(t)=x_{0}+v_{0} t+1 / 2 a_{0} t^{2}=x_{0}+1 / 2\left(v_{0}+v(t)\right) t \\
& (v(t))^{2}=\left(v_{0}\right)^{2}+2 a_{0}\left(x(t)-x_{0}\right)
\end{aligned}
$$

$$
\rightarrow a_{0}=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

8. HFiwf 2. . . 54 . [5222g] A basketball player, standing near the basket to grab a rebound, jumps 90 cm vertically.
(a) How much (total) time does the player spend in the top 25 cm of this jump? [0.0952381] \square ms
(b) How much (total) time does the player spend in the bottom 25 cm of this jump? [0.0052381] \square ms

Does this help explain why such players seem to hang in the air at the tops of their jumps?
O No, it is an optical illusion and they spend the same amount of time at the tops and bottoms of their jumps.
O No, it is an optical illusion and they spend less time at the tops of their jumps.
0 Yes, they spend more time at the tops of their jumps. [0.0052381]

$$
\begin{aligned}
& 0.25 \mathrm{~m} \begin{cases}\begin{array}{ll}
\left(t_{\text {top }}\right)=0 & v(t)=v_{0}-g t \\
x(t)=x_{0}+v_{0} t-1 / 2 g t^{2} \\
(v(t))^{2}=\left(v_{0}\right)^{2}-2 g\left(x(t)-x_{0}\right)
\end{array} \\
v\left(t_{2}\right) & \\
v\left(t_{\text {top }}\right)^{2}=v\left(t_{2}\right)^{2}-2 g\left(x\left(t_{\text {top }}\right)-x\left(t_{2}\right)\right)\end{cases} \\
& v\left(t_{2}\right)= \pm \sqrt{2 \cdot 9.8 \cdot 0.25} \mathrm{~m} / \mathrm{s}= \pm 2.2135 \mathrm{~m} / \mathrm{s} \\
& =v\left(t_{\text {top }}\right)-9.8\left(t_{2}-t_{\text {top }}\right) \\
& \left(t_{2}-t_{\text {top }}\right)=\frac{2.2135}{9.8} \mathrm{~s}=0.2258 \mathrm{~s}
\end{aligned}
$$

Definition of a vector

1. A vector can be visualized its length and direction.

2. Addition, substraction, and two forms of multiplication can be defined
3. Coordinate representations, and abstract extensions.

Vector addition:

Vector subtraction:

Some useful trigonometric relations (see Appendix E of your text)

$$
\frac{\mathrm{a}}{\sin \alpha}=\frac{\mathrm{b}}{\sin \beta}=\frac{\mathrm{c}}{\sin \gamma}
$$

Right triangle relations

$$
c=\sqrt{a^{2}+b^{2}}
$$

$$
\begin{aligned}
& \tan \alpha=a / b \\
& \sin \alpha=a / c \\
& \cos \alpha=b / c
\end{aligned}
$$

Vector components:

Vector components

$$
\begin{aligned}
& \mathbf{R}_{1}=x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+z_{1} \hat{\mathbf{z}} \\
& \mathbf{R}_{2}=x_{2} \hat{\mathbf{x}}+y_{2} \hat{\mathbf{y}}+z_{2} \hat{\mathbf{z}} \\
& \mathbf{R}_{1}+\mathbf{R}_{2}=\left(x_{1}+x_{2}\right) \hat{\mathbf{x}}+\left(y_{1}+y_{2}\right) \hat{\mathbf{y}}+\left(z_{1}+z_{2}\right) \hat{\mathbf{z}}
\end{aligned}
$$

Vector multiplication
"Dot" product $\mathbf{A} \bullet \mathbf{B} \equiv A B \cos \theta_{\mathrm{AB}} ; \quad \hat{\mathbf{x}} \bullet \hat{\mathbf{x}}=1$
"Cross" product $\quad|\mathbf{A} \times \mathbf{B}| \equiv A B \sin \theta_{\mathrm{AB}} ; \quad \hat{\mathbf{x}} \times \hat{\mathbf{y}}=\hat{\mathbf{z}}$

Right-hand rule

Examples of vectors: Position \& Velocity

Serway, Physics for Scientists and Engineers, 5/e Figure 4.1

Serway, Physics for Scientists and Engineers, 5/e Figure 4.3

Harcourt, Inc
Harcourt, Inc.

Serway, Physics for Scientists and Engineers, 5/e
Problem 3.37

Harcourt, Inc.

Peer instruction question N

Suppose a Ferry moves due north at $\mathbf{v}_{\mathbf{F}}=4 \mathrm{~m} / \mathrm{s}$ across a river which is flowing east at a velocity of $\mathbf{v}_{\mathbf{R}}=3 \mathrm{~m} / \mathrm{s}$. What is the velocity of the Ferry relative to the water?
(a) $4 \mathrm{~m} / \mathrm{s}$ (north) (b) $7 \mathrm{~m} / \mathrm{s} 37^{\circ}$ (east of north)
(c) $5 \mathrm{~m} / \mathrm{s} 37^{\circ}$ (east of north) (d) $5 \mathrm{~m} / \mathrm{s}$ (west of north)

