Announcements

- 1. Tentatively changed <u>schedule</u>; postponing first exam Tuesday, Sept. 30th
- 2. HW 1 and HW 2 WebAssign sets due today before midnight
- 3. Summary of 1-dimensional motion relationships
- 4. Today's lecture vectors
 - a. What are they and what do they have to do with us?
 - **b.** How to combine them adding and subtracting
 - c. How to multiply them & why would we want to

Displacement, velocity, and acceleration:

1. Displacement
$$x(t) = \int_0^t dt \, v(t') = \int_0^t dt \, \int_0^t dt \, a(t')$$

2. Velocity $v(t) = \frac{dx(t)}{dt} = \int_0^t dt \, a(t')$
3. Acceleration $a(t) = \frac{dv(t)}{dt}$

Special case of constant acceleration: $a(t) = a_0$ (assume that initial time is t=0s) $v(t) = v_0 + a_0 t$ $x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2 = x_0 + \frac{1}{2} (v_0 + v(t)) t$ $(v(t))^2 = (v_0)^2 + 2 a_0 (x(t) - x_0)$

PHY 113 -- Lecture 3

9/4/2003

$$\begin{aligned} v(t) &= v_0 + a_0 t \\ x(t) &= x_0 + v_0 t + \frac{1}{2} a_0 t^2 = x_0 + \frac{1}{2} (v_0 + v(t)) t \\ (v(t))^2 &= (v_0)^2 + 2 a_0 (x(t) - x_0) \end{aligned}$$

8. HRWB 2.P.054. [52229] A basketball player, standing near the basket to grab a rebound, jumps 90 cm vertically.

(a) How much (total) time does the player spend in the top 25 cm of this jump?
[0.0952381] ms
(b) How much (total) time does the player spend in the bottom 25 cm of this jump?
[0.0952381] ms

Does this help explain why such players seem to hang in the air at the tops of their jumps?

^O No, it is an optical illusion and they spend the same amount of time at the tops and bottoms of their jumps.

 $^{
m O}$ No, it is an optical illusion and they spend less time at the tops of their jumps.

 \odot Yes, they spend more time at the tops of their jumps. [0.0952381]

$$0.25 \text{m} \begin{cases} v(t_{top})=0 & v(t) = v_0 - g t \\ x(t) = x_0 + v_0 t - \frac{1}{2} g t^2 \\ (v(t))^2 = (v_0)^2 - 2 g(x(t) - x_0) \end{cases}$$
$$v(t_2) & v(t_{top})^2 = v(t_2)^2 - 2g(x(t_{top}) - x(t_2)) \\ v(t_2) = \pm \sqrt{2 \cdot 9.8 \cdot 0.25} \text{ m/s} = \pm 2.2135 \text{ m/s} \\ = v(t_{top}) - 9.8(t_2 - t_{top}) \\ (t_2 - t_{top}) = \frac{2.2135}{9.8} \text{ s} = 0.2258 \text{ s} \end{cases}$$

9/4/2003

Definition of a vector

1. A vector can be visualized its length and direction.

- 2. Addition, substraction, and two forms of multiplication can be defined
- 3. Coordinate representations, and abstract extensions.

Vector addition:

Some useful trigonometric relations

(see Appendix E of your text)

9/4/2003

Right triangle relations

Vector components:

Vector components

$$\mathbf{R}_{1} = x_{1}\hat{\mathbf{x}} + y_{1}\hat{\mathbf{y}} + z_{1}\hat{\mathbf{z}}$$

$$\mathbf{R}_{2} = x_{2}\hat{\mathbf{x}} + y_{2}\hat{\mathbf{y}} + z_{2}\hat{\mathbf{z}}$$

$$\mathbf{R}_{1} + \mathbf{R}_{2} = (x_{1} + x_{2})\hat{\mathbf{x}} + (y_{1} + y_{2})\hat{\mathbf{y}} + (z_{1} + z_{2})\hat{\mathbf{z}}$$

Vector multiplication

"Dot" product $\mathbf{A} \bullet \mathbf{B} \equiv AB \cos \theta_{AB}$; $\hat{\mathbf{x}} \bullet \hat{\mathbf{x}} = 1$ "Cross" product $|\mathbf{A} \times \mathbf{B}| \equiv AB \sin \theta_{AB}$; $\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$

9/4/2003

Examples of vectors: Position & Velocity

Serway, Physics for Scientists and Engineers, 5/e Figure 4.1

Harcourt, Inc.

Serway, Physics for Scientists and Engineers, 5/e Problem 3.37

Peer instruction question

Suppose a Ferry moves due *north* at v_F =4m/s across a river which is flowing *east* at a velocity of v_R =3m/s. What is the velocity of the Ferry relative to the water?

(a)4m/s (north) (b) 7m/s 37^{O} (east of north)

(c) 5m/s 37^o(east of north) (d) 5m/s (west of north)

9/4/2003