Announcements

1. Web page has been updated —

HW assignments posted through HW 8
Practice exams posted

2. Last week — introduced notions of displacements, velocity,
and acceleration in one dimension and introduced the
general notion of vectors.

3. Today’s lecture — displacement, velocity, acceleration
vectors; trajectory motion
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Review of vectors:

3. HRwE 3.P.010. [56506] A car 1s driven east for a distance of 51 km,
then north for 25 km, and then i a direction 29° east of north for
20 km. Draw the vector diagram and determine the total
displacement of the car from its starting point.

Magnitude
[0.0714286] km
Direction "“ﬁCD
[0.0714286] ° (counterclockwise from east) ,.*" & 1=
“‘ &%.’ :l_
““ :’ e
R o =™
““ o 6 - =
\ I3 COS
> E “I‘I llllllllllllllllllllllllllllllllllllllllllllll *‘ llllllll *’

9/9/2003 PHY 113 -- Lecture 4



3. HrRwe 3P .031. [52635) Use the definition of scalar product, a-b=ab
cos e, and the fact that a - b= avby + ayby + a:b; (see Problem 46)

to calculate the angle between the two vectors givenbya=2.0i+
40j+20kandb=50i+30j+6.0k

[0.0714286] | g
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a-b=abcoséd a

a=.al+a’+a’

b =/b?+b? +b;
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Two-dimensional motion
Displacement: r(t) = X(t) i + y(t) j

Velocity: v(t) = v, i +v, (] v = . W
ot Yoodt

Acceleration: a(t) =a,(t)i+a(t)j 4 —"x 4 =7
' ’ T a7 dt
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Special case — Projectile motion

a=-gy (constant; g~9.8 m/s?)

Trajectory:
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Graphs of parametric equations:
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Graph of trajectory:
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Serway, Physics for Scientists and Engineers, 5/e
Figura 4.6

Harcourt, Inc.
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Other results derived from projectile equations

h=y(top)s  top =Vyil0
=> h=yi+ %2 v,;*/g

=>R=X(2t,,,)-X;=2V,;v,;/g=V;*sin(26)/g
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On line quiz for lecture 4

A small airplane is traveling horizontally in the East direction at a constant
velocity of 200 m/s at a height of 600 m, when it passes over your head.
At the same time, a ball (which had been stuck to the plane) falls from the
bottom of the plane. Suppose you are watching all of this happen and the
air friction is negligible (not really a good approximation, but this makes
the problem easier to analyze). Also assume that the ground to the east of
you is completely flat (no hills, etc.).

1. Is the ball likely to hit you? (a) yes (b) no

2. What is the magnitude of the horizontal velocity (in m/s) when the ball
hits the ground? (a) 2m/s (b) 20m/s (c) 200 m/s  (d) 2000 m/s

3. What is the magnitude of the vertical velocity when the ball hits the
ground? (a) Om/s (b) 77 m/s (c) 108 m/s (d) 11760 m/s

4. Where will the ball land on the ground?  (a) On your head?
(b) Several hundred meters to the East of you? (c) Several thousand
meters to the East of you? (d) Several hundred meters to the West of
you?
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Serway, Physics for Scientists and Engineers, S
Figura 4.13
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Peer instruction questions

1. Suppose you hit a golf ball on earth at an initial speed of 50m/s
at a 45° angle on Earth so that it travels a distance R before
hitting the (level) ground. If you were to do the same thing on
the moon which has a gravitational acceleration g/6 what
distance R,, would it travel? (a) Rg/36 (b)R:/6 (C) 6R.

(d) 36 R

2. Suppose that you drop a ball from a height of 100 m above the
surface of the earth and it takes a time t¢ to fall to the earth’s
ground. If you were to do the same thing 100 m above the
surface of the moon, what is the time t,, that it takes to fall to
moon’s ground? (a) tz/6 (b) tel/g () V6 te (d) 6t.
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From: Monday’s WS Journal: (courtesy of Charles Schulz)

PEANUTS

1 .
Lo (t) — Vgaut — 5 gytz

1 .
rWoodstock (t) — rV(\)/oodstock + V\(/)Voodstock [t o tStart] o 5 gy[t o tStart ]2
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Motion in two dimensions

Summary of equations describing trajectory motion:
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September 7, H002

PHY 113 - “Derivation” of projectile motion equations

In class, we hgye gtregeed the potion that it s 'Lm]:-.;.rtg,nt to understamd the l'élalioﬂshi[.‘rs
between the basic egquations of physics and the relations that can be derived from them.
While these deepded detivations ate not generally o favorite lectyre tople, they gre very
important for understanding the meaning and the proper wse of the equations. These notes
show an example of & simple derivation for projectile motion. While this derlvation & not
g formal nor 88 rigorous &8 8 mathematical “peoof”, it I8 sdequate for these purposes.

The hasie equations for car starting point, are the equatkons which define the relationships
hetween position, velocity, and acceleration. For this purpose, we will assume that we can
degeribe thege quantities in the & — i plane:

rt) = z(f)% + plt)F, (1]
vt) = e (H)R + v l1)9, 12
alf) = az it + aylt]y. 13)

The veloeity i the rate of change of positkon:

drit)
W lf:' = T, [4]
and the acceleration l= the rate of change of velocity:
_ dvit)
aft) = T (5]

Additional relationships can be obtained by taking the antiderivatives. The equations [1-5)
are general definitions.

Now, let ws consider a special case — where the acceleration is constant in space snd time
and is given by
alt) = —i¥, 1G]

with g = 0.8m /=%, repregepting the peceleration of gravity in the —§ direction near the
surface of the earth. By evaluating the velationships (1-5) for this case, we find:

wt) = ugy vyt = o, — gt 7]

and I
Tlt) = 2 + vyt pit) = g + uat — Egﬁ’. (8]

where 2, v, ¥y denote initial (¢ = 0] positions and velocities.

The equations (6-8) describes how an object moves in a plane. IF we know the constants
T Wiy Peiy Ui, W £aT determine its position and velocity at any time ¢ = §. Now our task
& to use these relationships (1-8] to find the direct relationship between the x and y. This
will enable us to spatially trace out the path of the object a8 It moves on its trajectory. We
can do this by manipulating Eq. (8) with the following stepe:

1. Solve the first equation for ¢

#t) — r

i) =2 +ugt = t= " 2]
2. Replace § in the second equation wich the expression ahove:
et -z 1 o) — e
t] = i - = . 10
witl El'-‘l‘t"n( o ] 29( o i1aj

Thiz result, shows that for every horizontal position of the object 2(¢), the vertical position
it} traces out & parabolic path.
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_dx

\%
X
dt
m\ Vo) = vy
X(t) =X+ vt
¢ v, = v, -gt
\ , yO) =y + v, t-%gt

x(t) - X 1 x(t) - X;
y() =¥ +Vy; -9
Vi 2 Vi

Advice:
1. Keep basic concepts and equations at the top of your head.

2. Construct an equation sheet of commonly used equations for
consultation in problem solving (homework and exams).
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Uniform circular motion

Is the object accelerating? (A) yes
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Serway, Physics for Scientists and Engineers, /e

Serway, Physics for Scientists and Engineers, 5fe
Figure 4.16bc Figure 4,18
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For example, suppose v=5m/s, r=0.5m; a=-50r m/s2.
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Peer instruction questions

Think about riding on a merry-go-round. Suppose that you start the
merry-go-round rotating and then jump on. After you jump on, the
merry-go-round continues to rotate, gradually slowing down. The
questions below pertain to you standing on the rotating merry-go-round
at a point near the edge.

1. What is the direction of your velocity?

(a) tangential (b) radial (c)up  (d) down
2. Do you have a tangential component of acceleration? (a) yes (b) no
3. Do you have a radial component of acceleration? (a) yes (b) no

4. Do you have a vertical component of acceleration? (a) yes (b) no
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Addition of accelerations:

Serway, Physics for Scientists and Enginsers, &/
Figura 4.19

v # ()
a, = v
' r
a, =gsinéd
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