Announcements

1. Physics colloquium (Professor Brian Matthews) cancelled.
2. Scholarship opportunities for undergraduate students
3. Schedule -- First exam - Tuesday, Sept. 30 ${ }^{\text {th }}$

Review Chapters 1-8 - Thursday, Sept. 25 ${ }^{\text {th }}$
Extra practice problems on line
Extra problem solving sessions???
4. Some comments on friction and HW 6
5. The notion of energy and work

Scholarship Opportunities for undergraduate students

Wake Forest University Research Fellowships

(for mentored research projects during an academic year or during a summer, available to all WFU students with at least sophomore standing and 3.0 GPA)

Barry M. Goldwater Scholarships

(for tuition and expenses support, available to sophomores or juniors planning careers in mathematics, the natural sciences, or engineering)
Internal deadline: Nov. 14, 2003); Foundation deadline: Feb. 2, 2004

Churchill Scholarships

(for one year of graduate study in engineering, mathematics, and the physical and natural sciences at Churchill College, Cambridge University,
available to graduating seniors) Internal deadline: Oct. 17, 2003; Foundation deadline: Nov. 21, 2003)

Surface friction force models

$>$ Static friction

$$
\boldsymbol{f}=-\mathrm{F}_{\text {applied }} \text { if }|\boldsymbol{f}|<\mu_{\mathrm{s}} \mathrm{~N}
$$

$>$ Kinetic friction

$$
|\boldsymbol{f}|=\mu_{\mathrm{s}} \mathrm{~N}
$$

4. HRWG 6.P.016. [56520] A 2.5 kg block is pushed along a horizontal floor by a force F of magnitude 20 N at an angle $\theta=30^{\circ}$ with the horizontal (Fig. 6-26). The coefficient of kinetic friction between the block and floor is 0.25 .

Figure 6-26 $\quad N-m g-F \sin \theta=0$
(a) Calculate the magnitude of the frictional force on the block from the floor.
$[0.1176471] \square \mathrm{N} \quad f=\mu_{\mathrm{k}} \mathrm{N}$
(b) Calculate the magnitude of the acceleration of the block.
$[0.1176471] \square \mathrm{m} / \mathrm{s}^{2}$

$$
F \cos \theta-\boldsymbol{f}=m a
$$

A slide loving pig slides down a 24° incline (Fig. 6-24) in twice the time it would take to slide down a frictionless 24° incline. What is the coefficient of kinetic friction between the pig and the slide?

Figure 6-24

$$
\begin{aligned}
& \text { without friction: } m g \sin \theta=m a \quad D=\frac{1}{2} a t^{2} \\
& \text { with friction: } m g \sin \theta-\mu_{k} m g \cos \theta=m a_{f} \quad D=\frac{1}{2} a_{f} t_{f}^{2} \\
& t_{f}=2 t \quad \Rightarrow 4 a_{f}=a \quad \Rightarrow 4\left(g \sin \theta-\mu_{k} g \cos \theta\right)=g \sin \theta
\end{aligned}
$$

Energy \rightarrow work, kinetic energy

Force $\boldsymbol{\rightarrow}$ effects acceleration
A related quantity is Work $W_{i \rightarrow f}=\int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} \mathbf{F} \cdot d \mathbf{r}$

$$
\mathbf{A} \cdot \mathrm{B}=\mathrm{AB} \cos \theta
$$

Units of work:

$$
\text { work }=\text { force } \cdot \text { displacement }=(\mathrm{N} \cdot \mathrm{~m})=\text { (joule })
$$

- Only the component of force in the direction of the displacement contributes to work.
-Work is a scalar quantity.
-If the force is not constant, the integral form must be used.
-Work can be defined for a specific force or for a combination of forces

$$
W_{1}=\int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} \mathbf{F}_{1} \cdot d \mathbf{r}
$$

$$
W_{1+2}=\int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}}\left(\mathbf{F}_{1}+\mathbf{F}_{2}\right) \cdot d \mathbf{r}=W_{1}+W_{2}
$$

$$
\text { PHY } 113 \text {-- Lecture } 7
$$

Peer instruction question

A ball with a weight of 5 N follows the trajectory shown. What is the work done by gravity from the initial \mathbf{r}_{i} to final displacement \mathbf{r}_{f} ?

(a) 0 J
(b) 7.5 J
(c) 12.5 J
(d) 50 J PHY 113 -- Lecture 7

Gravity does negative work:

Gravity does
positive work:
\mathbf{r}_{i}

\mathbf{r}_{i}
$\mathrm{W}=-\mathrm{mg}\left(\mathrm{r}_{\mathrm{f}}-\mathrm{r}_{\mathrm{i}}\right)<0$
9/18/2003

More examples:
Suppose a rope lifts a weight of 1000 N by 0.5 m at a constant upward velocity of $2 \mathrm{~m} / \mathrm{s}$. How much work is done by the rope?

$$
\mathrm{W}=500 \mathrm{~J}
$$

Suppose a rope lifts a weight of 1000 N by 0.5 m at a constant upward acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. How much work is done by the rope?

$$
\mathrm{W}=602 \mathrm{~J}
$$

Why is work a useful concept?
Consider Newton's second law:

$$
\mathbf{F}_{\text {total }}=\mathrm{m} \mathbf{a} \quad \rightarrow \mathbf{F}_{\text {total }} \cdot \mathrm{d} \mathbf{r}=\mathrm{m} \mathbf{a} \cdot \mathrm{~d} \mathbf{r}
$$

$$
\begin{gathered}
\int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} \mathbf{F}_{\text {total }} \cdot d \mathbf{r}=\int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} m \mathbf{a} \cdot d \mathbf{r}=\int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} m \frac{d \mathbf{v}}{d t} \cdot d \mathbf{r}=\int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} m \frac{d \mathbf{v}}{d t} \cdot \frac{d \mathbf{r}}{d t} d t=\int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} m \frac{d \mathbf{v}}{d t} \cdot \mathbf{v} d t \\
\mathrm{~W}_{\text {total }}=1 / 2 \mathrm{~m}_{\mathrm{V}_{\mathrm{f}}}^{2-1 / 2 \mathrm{~m} \mathrm{~V}_{\mathrm{i}}^{2}}
\end{gathered}
$$

Kinetic energy (joules)

Introduction of the notion of Kinetic energy

Some more details:
Consider Newton's second law:

$$
\begin{aligned}
& \mathbf{F}_{\text {total }}=\mathrm{m} \mathbf{a} \quad \rightarrow \mathbf{F}_{\text {total }} \cdot \mathrm{d} \mathbf{r}=\mathrm{m} \mathbf{a} \cdot \mathrm{~d} \mathbf{r} \\
& \int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} \mathbf{F}_{\text {total }} \cdot d \mathbf{r}=\int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} m \mathbf{a} \cdot d \mathbf{r}=\int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} m \frac{d \mathbf{v}}{d t} \cdot d \mathbf{r}=\int_{t_{i}}^{t_{f}} m \frac{d \mathbf{v}}{d t} \cdot \frac{d \mathbf{r}}{d t} d t=\int_{t_{i}}^{t_{f}} m \frac{d \mathbf{v}}{d t} \cdot \mathbf{v} d t \\
& \quad \int_{t_{i}}^{t_{f}} m \frac{d \mathbf{v}}{d t} \cdot \mathbf{v} d t=\int_{\mathbf{v}_{i}}^{\mathbf{v}_{f}} m d \mathbf{v} \cdot \mathbf{v}=\int_{i}^{f} d\left(\frac{1}{2} m \mathbf{v} \cdot \mathbf{v}\right)=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \\
& \quad \rightarrow \mathrm{~W}_{\text {total }}=1 / 2 \mathrm{~m} \mathrm{~V}_{\mathrm{f}}^{2}-1 / 2 \mathrm{~m} \mathrm{~V}_{\mathrm{i}}^{2}
\end{aligned}
$$

Kinetic energy (joules)

Kinetic energy: $\quad K=1 / 2 \mathrm{~m} \mathrm{v}^{2}$

$$
\text { units: }(\mathrm{kg})(\mathrm{m} / \mathrm{s})^{2}=\underbrace{\left(\mathrm{kg} \mathrm{~m} / \mathrm{s}^{2}\right.}_{\mathrm{N}} \underbrace{\mathrm{~m}}_{\mathrm{m}}=\text { joules }
$$

Work - kinetic energy relation:

$$
\mathrm{W}_{\text {total }}=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}
$$

Online Quiz for Lecture 7
 The Notion of Kinetic Energy -- Sept. 18, 2003

Suppose you hit a golf ball having a mass of 0.4 kg with an initia velocity of $v_{i}=45 \mathrm{~m} / \mathrm{s}$ and an initial angle of 45 deg . Assume that the ball makes a perfectly parabolic trajectory and lands at the same vertical height as it started.

1. What is the initial kinetic energy of the ball? (a) -202.5 J (b) 202.5 J (c) -405 J (d) 405 J
2. What is the final kinetic energy of the ball just before it reaches the ground?
(a) -202.5 J (b) 202.5 J (c) -405 J (d) 405 J
3. What is the kinetic energy of the ball at the highest point of the trajectory?
(a) -202.5 J (b) 202.5 J (c) -405 J (d) 405 J

Examples of the work-kinetic energy relation:

$$
\text { Suppose } \mathrm{F}_{\text {total }}=\text { constant }=\mathrm{F}_{0}
$$

$$
\begin{gathered}
\mathrm{W}_{\text {total }}=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}} \\
\Rightarrow \mathrm{~F}_{0}\left(\mathrm{X}_{\mathrm{f}}-\mathrm{X}_{\mathrm{i}}\right)=1 / 2 \mathrm{mv}_{\mathrm{f}}^{2}-1 / 2 \mathrm{mv}_{\mathrm{i}}^{2}
\end{gathered}
$$

In this case, we also know that $\mathrm{F}_{0}=\mathrm{ma}_{0}$ so that,

$$
\begin{aligned}
& \mathrm{F}_{0}\left(\mathrm{x}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}\right)=\mathrm{ma}_{0}\left(\mathrm{x}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}\right)=1 / 2 \mathrm{mv}_{\mathrm{f}}^{2}-1 / 2 \mathrm{mv}_{\mathrm{i}}^{2} \\
& \quad \Rightarrow \mathrm{v}_{\mathrm{f}}^{2}=\mathrm{v}_{\mathrm{i}}^{2}+2 \mathrm{a}_{0}\left(\mathrm{x}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}\right)
\end{aligned}
$$

More examples of work-kinetic energy relation without friction:

kinematic analysis: $\mathrm{v}_{\mathrm{f}}^{2}=\mathrm{v}_{\mathrm{i}}^{2}+2 \mathrm{a}_{0}\left(\mathrm{x}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}\right)=0+2(\mathrm{~g} \sin \theta) \mathrm{L}=2 \mathrm{gh}$ energy analysis: $\mathrm{W}_{\text {total }}=\mathrm{mgh}=1 / 2 \mathrm{mv}_{\mathrm{f}}^{2}$

More examples of work-kinetic energy relation with friction:

kinematic analysis: $\mathrm{v}_{\mathrm{f}}{ }^{2}=\mathrm{v}_{\mathrm{i}}{ }^{2}+2 \mathrm{a}_{0}\left(\mathrm{X}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}\right)=2\left(\mathrm{~g} \sin \theta-\mu_{\mathrm{k}} \mathrm{g} \cos \theta\right) \mathrm{L}$ energy analysis: $\mathrm{W}_{\text {total }}=\mathrm{mgh}-\mu_{\mathrm{k}} \mathrm{mg} \cos \theta \mathrm{L}=1 / 2 \mathrm{mv}_{\mathrm{f}}^{2}$

 skis and the snow is $\mu_{\mathrm{k}}=0.2$. What is the stopping distance d?

Harcourt, Inc.
mgh- $\mu_{\mathrm{k}} \mathrm{mgcos} \theta \mathrm{L}-\mu_{\mathrm{k}} \mathrm{mgd}=0$
$\mathrm{d}=\mathrm{h} / \mu_{\mathrm{k}}-\mathrm{L} \cos \theta$

A ball attached to a rope is initially at an angle θ. After being released from rest, what is its velocity at the lowest point 2 ?

$$
\sqrt{2 g L(1-\cos \theta)}
$$

Hooke's "law" (model force)

Example problem:
A mass m with initial velocity v compresses a spring with Hooke's law constant k by a distance x_{f}. What is x_{f} when the mass momentarily comes to rest?

$$
\begin{aligned}
& K_{i}=\frac{1}{2} m v^{2} \\
& K_{f}=0 \\
& W_{i \rightarrow f}=-\frac{1}{2} k x_{f}{ }^{2}
\end{aligned}
$$

$$
W_{i \rightarrow f}=K_{f}-K_{i} \quad \Rightarrow \frac{1}{2} k x_{f}^{2}=\frac{1}{2} m v^{2}
$$

$$
x_{f}=\sqrt{\frac{m}{k}} v
$$

