Announcements

- 1. Physics colloquium (Professor Brian Matthews) cancelled.
- 2. Scholarship opportunities for undergraduate students
- 3. Schedule -- First exam Tuesday, Sept. 30th

Review Chapters 1-8 – Thursday, Sept. 25th

Extra practice problems on line

Extra problem solving sessions???

- 4. Some comments on friction and HW 6
- 5. The notion of energy and work

Scholarship Opportunities for undergraduate students

Wake Forest University Research Fellowships

(for mentored research projects during an academic year or during a summer; available to all WFU students with at least sophomore standing and 3.0 GPA)

Barry M. Goldwater Scholarships

(for tuition and expenses support, available to sophomores or juniors planning careers in mathematics, the natural sciences, or engineering)

Internal deadline: Nov. 14, 2003); Foundation deadline: Feb. 2, 2004

Churchill Scholarships

(for one year of graduate study in engineering, mathematics, and the physical and natural sciences at Churchill College, Cambridge University,

available to graduating seniors) Internal deadline: Oct. 17, 2003; Foundation deadline: Nov. 21, 2003)

9/18/2003

Surface friction force models

≻Static friction

 $f = -F_{applied}$ if $|f| < \mu_s N$ >Kinetic friction

 $f/=\mu_{\rm s}$ N

4. HRW6 6.P.016. [56520] A 2.5 kg block is pushed along a horizontal floor by a force F of magnitude 20 N at an angle $\theta = 30^{\circ}$ with the horizontal (Fig. 6-26). The coefficient of kinetic friction between the block and floor is 0.25.

Energy → work, kinetic energy

Force \rightarrow effects acceleration

A related quantity is **Work** $W_{i \to f} = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F} \cdot d\mathbf{r}$

 $\mathbf{A} \cdot \mathbf{B} = \mathbf{A} \mathbf{B} \cos \theta$

Units of work:

work = force \cdot displacement = (N \cdot m) = (joule)

•Only the component of force in the direction of the displacement contributes to work.

- •Work is a *scalar* quantity.
- •If the force is not constant, the integral form must be used.
- •Work can be defined for a specific force or for a combination of forces

$$W_1 = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F}_1 \cdot d\mathbf{r} \qquad W_2 = \int_{\mathbf{r}_i}^{\mathbf{r}_f} \mathbf{F}_2 \cdot d\mathbf{r} \qquad W_{1+2} = \int_{\mathbf{r}_i}^{\mathbf{r}_f} (\mathbf{F}_1 + \mathbf{F}_2) \cdot d\mathbf{r} = W_1 + W_2$$
9/18/2003 PHY 113 -- Lecture 7 7

Peer instruction question

A ball with a weight of 5 N follows the trajectory shown. What is the work done by gravity from the initial \mathbf{r}_i to final displacement \mathbf{r}_f ?

More examples:

Suppose a rope lifts a weight of 1000N by 0.5m at a constant upward velocity of 2m/s. How much work is done by the rope?

W=500 J

Suppose a rope lifts a weight of 1000N by 0.5m at a constant upward acceleration of $2m/s^2$. How much work is done by the rope?

W=602 J

9/18/2003

Why is work a useful concept?

Consider Newton's second law:

$$\mathbf{F}_{\text{total}} = \mathbf{m} \, \mathbf{a} \quad \Rightarrow \mathbf{F}_{\text{total}} \cdot \mathbf{dr} = \mathbf{m} \, \mathbf{a} \cdot \mathbf{dr}$$

$$\int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} \mathbf{F}_{total} \cdot d\mathbf{r} = \int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} m\mathbf{a} \cdot d\mathbf{r} = \int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} m\frac{d\mathbf{v}}{dt} \cdot d\mathbf{r} = \int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} m\frac{d\mathbf{v}}{dt} \cdot \frac{d\mathbf{r}}{dt} = \int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} m\frac{d\mathbf{v}}{dt} \cdot \mathbf{v}dt$$

$$\mathbf{W}_{total} = \frac{1/2}{1/2} \mathbf{m} \mathbf{V}_{f}^{2} - \frac{1/2}{1/2} \mathbf{m} \mathbf{V}_{i}^{2}$$
Kinetic energy (joules)
9/18/2003 PHY 113 -- Lecture 7 12

Introduction of the notion of Kinetic energy

Some more details:

Consider Newton's second law:

 $\mathbf{F}_{\text{total}} = \mathbf{m} \, \mathbf{a} \quad \Rightarrow \mathbf{F}_{\text{total}} \cdot \mathbf{dr} = \mathbf{m} \, \mathbf{a} \cdot \mathbf{dr}$ $\int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} \mathbf{F}_{total} \cdot d\mathbf{r} = \int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} m\mathbf{a} \cdot d\mathbf{r} = \int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} m\frac{d\mathbf{v}}{dt} \cdot d\mathbf{r} = \int_{t_{i}}^{t_{f}} m\frac{d\mathbf{v}}{dt} \cdot \frac{d\mathbf{r}}{dt} dt = \int_{t_{i}}^{t_{f}} m\frac{d\mathbf{v}}{dt} \cdot \mathbf{v} dt$ $\int_{t}^{t_{f}} m \frac{d\mathbf{v}}{dt} \cdot \mathbf{v} dt = \int_{\mathbf{v}}^{\mathbf{v}_{f}} m d\mathbf{v} \cdot \mathbf{v} = \int_{t}^{f} d\left(\frac{1}{2}m\mathbf{v} \cdot \mathbf{v}\right) = \frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2}$ $\rightarrow W_{total} = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$ Kinetic energy (joules) PHY 113 -- Lecture 7 13

9/18/2003

Kinetic energy:
$$K = \frac{1}{2} m v^2$$

units: (kg) $(m/s)^2 = (kg m/s^2) m$
 $N m = joules$

Work – kinetic energy relation:

$$W_{total} = K_f - K_i$$

Online Quiz for Lecture 7 The Notion of Kinetic Energy -- Sept. 18, 2003

Suppose you hit a golf ball having a mass of 0.4 kg with an initial velocity of $v_i = 45$ m/s and an initial angle of 45 deg. Assume that the ball makes a perfectly parabolic trajectory and lands at the same vertical height as it started.

- What is the initial kinetic energy of the ball?
 (a) -202.5J (b) 202.5J (c) -405 J (d) 405 J
- 2. What is the final kinetic energy of the ball just before it reaches the ground?
 (a) -202.5J (b) 202.5J (c) -405 J (d) 405 J
- 3. What is the kinetic energy of the ball at the highest point of the trajectory?
 (a) -202.5J (b) 202.5J (c) -405 J (d) 405 J

Suppose $F_{total} = constant = F_0$

$$W_{total} = K_f - K_i$$

 $\Rightarrow F_0(x_f - x_i) = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$

In this case, we also know that $F_0 = ma_0$ so that,

9/18/2003

kinematic analysis: $v_f^2 = v_i^2 + 2a_0 (x_f - x_i) = 0 + 2(g \sin\theta)L = 2gh$ energy analysis: $W_{total} = mgh = \frac{1}{2} mv_f^2$

9/18/2003

kinematic analysis: $v_f^2 = v_i^2 + 2a_0 (x_f - x_i) = 2(g \sin\theta - \mu_k g \cos\theta)L$ energy analysis: $W_{total} = mgh - \mu_k mg \cos\theta L = \frac{1}{2} mv_f^2$

9/18/2003

Serway, Physics for Scientists and Engineers, 5/e Figure 8.10

Suppose that the coefficient of friction between the skis and the snow is $\mu_k=0.2$. What is the stopping distance d?

Harcourt, Inc.

mgh- μ_k mgcos θ L- μ_k mgd=0

 $d=h/\mu_k$ -Lcos θ

9/18/2003

$$\sqrt{2gL(1-\cos\theta)}$$

9/18/2003

Hooke's "law" (model force)

Example problem:

A mass *m* with initial velocity *v* compresses a spring with Hooke's law constant *k* by a distance x_f . What is x_f when the mass momentarily comes to rest?

9/18/2003