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Notes on quantum treatment of spin
transitions

Reference: Charles P. Slichter, Principles of Magnetic Resonance, Harper & Row, 1963.

In the following, we will use the following Pauli spin matrices:

=(00) w=(0F) m(8) W

In terms of these matrices, the electron magnetic moment can be written:

-WTB& = pie(0uX + 0, + 0.2), (2)
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where g denotes the electron g-factor, up = 5.788 x 107° eV/T is the Bohr magneton, and
pe = —5.795 x 1075 eV/T is the electron magnetic moment. This same formalism can
also treat nuclear spin—1/2 systems, with gyux replacing —gug. The nuclear magneton
pn = 3.152 x 1078 eV/T and gproton = 2.793, gneutron = —1.913. In the following, we write
the explicit formulas in terms of the electron intrinsic magnetic moment, but the same
formulation could be applied to other spin—1/2 systems as indicated. The Hamiltonian
which represents the interaction between the electron magnetic moment and a magnetic
field B is given by

H=—i-B. (3)

In magnetic resonance experiments, the magnetic field is generally composed of a constant
component (By) taken to be in the Z direction and a rotating component (B;) in the per-
pendicular direction taken to be in the z — y plane. Suppose that the rotation frequency is
denoted by €2, the magnetic field can be written:

B = Bj(cos(Q2t)% + sin(Q)y) + Boz, (4)

where it is generally assumed that By >> Bj. For this field, the interaction Hamiltonian
can be written:
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We would like to solve the time-dependent Schrodinger equation:

Lot
ih= = = HU(t). (6)

In order simplify the mathematics, we notice that
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Similarly, we can write,
_ 0U(t) e~/ 0 .0 =12 /20
257 = ( 0 ei2 ma | o me 0 e it2 (t).  (8)

Defining a transformed wave function W’
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the differential equation that must be solved to find the solutions to the Schrodinger equation
can then be written:

V() ( —peBo—"  —u.B , ,
— = V() = Heg V' (). 1
ih ot ( — e By —(—peBy — 1) (¥ 7 ¥ (1) (10)

The transformed wave function ¥’ can be interpreted as representing the spin in a rotating
coordinate system in which the effective Hamiltonian is now independent of time. Solving
the differential equation (10), we find

W' (t) = e~ Het/BG! (), (11)

where U’(0) denotes the initial value of the transformed wave function and where the expo-
nential function must be evaluated by taking its Taylor series expansion. Consider a general

2 x 2 matrix of the form
[ a b
m= ( b g ) ) (12)

The exponential of m can be evaluated:
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For our form of m, all even terms are diagonal,

a? + b? 0 1 0
e (U0 s wen (3 0), »

and all odd terms are proportional to m itself, so that we can simplify the expansion by
summing the odd and even terms separately:

e_im:cos(\/oﬂ——i-l)?)<(1) ?)—i%(; _ba>. (15)

Defining the simplifying notation, Qy = — By /h, Q1 = —peB1/h, Qr = \/(QO —Q/2)2 + 03

cos(fy) = (Q — 2/2)/Q7, and sin(fy) = Q;/Qr, we can write the full solution to the
Schrédinger equation in the form

U(t) = ( ei;”/? y gtﬂ ) {COS(QTt) ( (1) (1) ) — isin(Qrt) ( ;’sgzg)) _SLI;(SH(%)O) )}\11(0).
(16)




For the special value of the rotational frequency €2 = 2€), the general result 16 simplifies to

w0 = (737 e ) (S e ) w (17)

PHY 741 — Assignment 17

1. Write down some of the intermediate steps of the above derivations. (Extra credit
offered for any errors corrected.)

1 . . .
R other words, the system begins in the spin-up state.
Assume that Q has been chosen at the resonant value (Eq. 17) and choose some
reasonable value for €2;. Evaluate and plot the probabilities as a function of time that

the system is in the spin-up state (P;(t)), and that the system is in the spin-down state

(Py(2))-

2. Suppose that ¥U(0) =



