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Summary of time dependent theory equations

Time dependent perturbation expansion

Now suppose that the perturbation depends on time, H(r,t) = Ho(r) + Hi(r,t). The
differential equation we must solve is
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We will again assume that we know all of the eigenvalues and eigenfunctions of the reference
Hamiltonian

Hod° = E03°. (2)

In this case, the time dependence of the zero order eigenfunctions takes the form:
_+E0
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The spatial functions @2 (r) form a complete orthonormal set of functions. The full solution
is expected to take the form

B(r,1) = 3 an(t)gh (x)e /N, (4)

where the coefficients a,(t) are to be determined from solution of the first order differential
equation:
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At this point, we have not made any approximations. In order to proceed, we expand the
coefficients as a sum of orders of approximation:

an(t) = a0 (1) + (1) + a2 (1) ... (6)

In general we will assume that the system is initially in a well-defined state of the zero order
Hamiltonian:

agz)) (t) = Snm. (7)

The equation for the first order coefficient then takes the form:
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Thus the first order coefficients can be determined from a knowledge of the matrix elements

of the time-dependent perturbation #i(r,t). Higher order corrections can be determined
from the lower order coefficients.



We will consider the first order coefficients for the case in which there is a harmonic time
dependence which is “turned on” at time ¢t = 0:

Hi(r,t) = V(r) (e + ) O(1), (9)

where ©(t) denotes the Heaviside step function. If the system is initially (¢ < 0) in the zero
order state ®°, the effects of the perturbation to first order in V is given by
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In this expression, wp,, = @ For large times ¢, it can be shown that the squared

modulus of the exitation coefficient a{!)(#) determines the transition rate:
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Assignment 22

Write out a real value expression for |a{l)(w,t)|?. Assume some values for V;,,,/h and wy,
and plot your expression as a function of time for various values of w in order to develop

your intuition about the Fermi Golden Rule.



