Notes on quantum treatment of spin transitions

Reference: Charles P. Slichter, Principles of Magnetic Resonance, Harper \& Row, 1963.

In the following, we will use the following Pauli spin matrices:

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

In terms of these matrices, the electron magnetic moment can be written:

$$
\begin{equation*}
\vec{\mu}=\frac{g \mu_{B}}{2} \vec{\sigma} \equiv \mu_{e}\left(\sigma_{x} \hat{\mathbf{x}}+\sigma_{y} \hat{\mathbf{y}}+\sigma_{z} \hat{\mathbf{z}}\right), \tag{2}
\end{equation*}
$$

where $g=-2.0023$ denotes the electron g-factor, $\mu_{B}=5.788 \times 10^{-5} \mathrm{eV} / \mathrm{T}$ is the Bohr magneton, and $\mu_{e}=-5.795 \times 10^{-5} \mathrm{eV} / \mathrm{T}$ is the electron magnetic moment. This same formalism can also treat nuclear spin $-1 / 2$ systems, with $g_{N} \mu_{N}$ replacing $g \mu_{B}$. The nuclear magneton $\mu_{N}=3.152 \times 10^{-8} \mathrm{eV} / \mathrm{T}$ and $g_{\text {proton }}=5.586, g_{\text {neutron }}=-3.826$. In the following, we write the explicit formulas in terms of the electron intrinsic magnetic moment, but the same formulation could be applied to other spin $-1 / 2$ systems as indicated. The Hamiltonian which represents the interaction between the electron magnetic moment and a magnetic field \mathbf{B} is given by

$$
\begin{equation*}
\mathcal{H}=-\vec{\mu} \cdot \mathbf{B} \tag{3}
\end{equation*}
$$

In magnetic resonance experiments, the magnetic field is generally composed of a constant component $\left(B_{0}\right)$ taken to be in the $\hat{\mathbf{z}}$ direction and a rotating component $\left(B_{1}\right)$ in the perpendicular direction taken to be in the $x-y$ plane. Suppose that the rotation frequency is denoted by Ω, the magnetic field can be written:

$$
\begin{equation*}
\mathbf{B}=B_{1}(\cos (\Omega t) \hat{\mathbf{x}}+\sin (\Omega t) \hat{\mathbf{y}})+B_{0} \hat{\mathbf{z}}, \tag{4}
\end{equation*}
$$

where it is generally assumed that $B_{0} \gg B_{1}$. For this field, the interaction Hamiltonian can be written:

$$
\mathcal{H}=-\mu_{e} \mathbf{B} \cdot \vec{\sigma} \equiv-\mu_{e}\left(\begin{array}{cc}
B_{0} & B_{1} \mathrm{e}^{-i \Omega t} \tag{5}\\
B_{1} \mathrm{e}^{\Omega \Omega t} & -B_{0}
\end{array}\right)
$$

We would like to solve the time-dependent Schrödinger equation:

$$
\begin{equation*}
i \hbar \frac{\partial \Psi(t)}{\partial t}=\mathcal{H} \Psi(t) \tag{6}
\end{equation*}
$$

In order simplify the mathematics, we notice that

$$
\left(\begin{array}{cc}
B_{0} & B_{1} \mathrm{e}^{-i \Omega t} \tag{7}\\
B_{1} \mathrm{e}^{i \Omega t} & -B_{0}
\end{array}\right)=\left(\begin{array}{cc}
\mathrm{e}^{-i \Omega t / 2} & 0 \\
0 & \mathrm{e}^{i \Omega t / 2}
\end{array}\right)\left(\begin{array}{cc}
B_{0} & B_{1} \\
B_{1} & -B_{0}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{e}^{i \Omega t / 2} & 0 \\
0 & \mathrm{e}^{-i \Omega t / 2}
\end{array}\right) .
$$

Similarly, we can write,

$$
i \hbar \frac{\partial \Psi(t)}{\partial t}=\left(\begin{array}{cc}
\mathrm{e}^{-i \Omega t / 2} & 0 \tag{8}\\
0 & \mathrm{e}^{i \Omega t / 2}
\end{array}\right)\left\{i \hbar \frac{\partial}{\partial t}-\left(\begin{array}{cc}
\frac{-\hbar \Omega}{2} & 0 \\
0 & \frac{\hbar \Omega}{2}
\end{array}\right)\right\}\left(\begin{array}{cc}
\mathrm{e}^{i \Omega t / 2} & 0 \\
0 & \mathrm{e}^{-i \Omega t / 2}
\end{array}\right) \Psi(t) .
$$

Defining a transformed wave function Ψ^{\prime}

$$
\Psi^{\prime} \equiv\left(\begin{array}{cc}
\mathrm{e}^{i \Omega t / 2} & 0 \tag{9}\\
0 & \mathrm{e}^{-i \Omega t / 2}
\end{array}\right) \Psi(t),
$$

the differential equation that must be solved to find the solutions to the Schrödinger equation can then be written:

$$
i \hbar \frac{\partial \Psi^{\prime}(t)}{\partial t}=\left(\begin{array}{cc}
-\mu_{e} B_{0}-\frac{\hbar \Omega}{2} & -\mu_{e} B_{1} \tag{10}\\
-\mu_{e} B_{1} & -\left(-\mu_{e} B_{0}-\frac{\hbar \Omega}{2}\right)
\end{array}\right) \Psi^{\prime}(t) \equiv \mathcal{H}_{\mathrm{eff}} \Psi^{\prime}(t) .
$$

The transformed wave function Ψ^{\prime} can be interpreted as representing the spin in a rotating coordinate system in which the effective Hamiltonian is now independent of time. Solving the differential equation (10), we find

$$
\begin{equation*}
\Psi^{\prime}(t)=\mathrm{e}^{-i \mathcal{H}_{\mathrm{efft}} / \hbar} \Psi^{\prime}(0), \tag{11}
\end{equation*}
$$

where $\Psi^{\prime}(0)$ denotes the initial value of the transformed wave function and where the exponential function must be evaluated by taking its Taylor series expansion. Consider a general 2×2 matrix of the form

$$
m \equiv\left(\begin{array}{cc}
a & b \tag{12}\\
b & -a
\end{array}\right)
$$

The exponential of m can be evaluated:

$$
\begin{equation*}
\mathrm{e}^{-i m} \equiv 1-i m-\frac{1}{2!} m^{2}-\frac{1}{3!} m^{2}(-i m)+\frac{1}{4!}\left(m^{2}\right)^{2} \cdots \tag{13}
\end{equation*}
$$

For our form of m, all even terms are diagonal,

$$
m^{2}=\left(\begin{array}{cc}
a^{2}+b^{2} & 0 \tag{14}\\
0 & a^{2}+b^{2}
\end{array}\right) \equiv\left(a^{2}+b^{2}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

and all odd terms are proportional to m itself, so that we can simplify the expansion by summing the odd and even terms separately:

$$
\mathrm{e}^{-i m}=\cos \left(\sqrt{a^{2}+b^{2}}\right)\left(\begin{array}{ll}
1 & 0 \tag{15}\\
0 & 1
\end{array}\right)-i \frac{\sin \left(\sqrt{a^{2}+b^{2}}\right)}{\sqrt{a^{2}+b^{2}}}\left(\begin{array}{cc}
a & b \\
b & -a
\end{array}\right) .
$$

Defining the simplifying notation, $\Omega_{0} \equiv-2 \mu_{e} B_{0} / \hbar, \Omega_{1} \equiv-2 \mu_{e} B_{1} / \hbar, \Omega_{T} \equiv \sqrt{\left(\Omega_{0}-\Omega\right)^{2}+\Omega_{1}^{2}}$, $\cos \left(\theta_{0}\right) \equiv\left(\Omega_{0}-\Omega\right) / \Omega_{T}$, and $\sin \left(\theta_{0}\right) \equiv \Omega_{1} / \Omega_{T}$, we can write the full solution to the Schrödinger equation in the form
$\Psi(t)=\left(\begin{array}{cc}\mathrm{e}^{-i \Omega t / 2} & 0 \\ 0 & \mathrm{e}^{i \Omega t / 2}\end{array}\right)\left\{\cos \left(\Omega_{T} t / 2\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-i \sin \left(\Omega_{T} t / 2\right)\left(\begin{array}{cc}\cos \left(\theta_{0}\right) & \sin \left(\theta_{0}\right) \\ \sin \left(\theta_{0}\right) & -\cos \left(\theta_{0}\right)\end{array}\right)\right\} \Psi(0)$.

For the special value of the rotational frequency $\Omega=\Omega_{0}$, the general result 16 simplifies to

$$
\Psi(t)=\left(\begin{array}{cc}
\mathrm{e}^{-i \Omega_{0} t / 2} & 0 \tag{17}\\
0 & \mathrm{e}^{i \Omega_{0} t / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \left(\Omega_{1} t / 2\right) & -i \sin \left(\Omega_{1} t / 2\right) \\
-i \sin \left(\Omega_{1} t / 2\right) & \cos \left(\Omega_{1} t / 2\right)
\end{array}\right) \Psi(0) .
$$

