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Notes on quantum treatment of spin
transitions

Reference: Charles P. Slichter, Principles of Magnetic Resonance, Harper & Row, 1963.

In the following, we will use the following Pauli spin matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1)

In terms of these matrices, the electron magnetic moment can be written:

~µ =
gµB

2
~σ ≡ µe(σxx̂ + σyŷ + σzẑ), (2)

where g = −2.0023 denotes the electron g-factor, µB = 5.788 × 10−5 eV/T is the Bohr
magneton, and µe = −5.795 × 10−5 eV/T is the electron magnetic moment. This same
formalism can also treat nuclear spin−1/2 systems, with gNµN replacing gµB. The nuclear
magneton µN = 3.152× 10−8 eV/T and gproton = 5.586, gneutron = −3.826. In the following,
we write the explicit formulas in terms of the electron intrinsic magnetic moment, but the
same formulation could be applied to other spin−1/2 systems as indicated. The Hamiltonian
which represents the interaction between the electron magnetic moment and a magnetic field
B is given by

H = −~µ ·B. (3)

In magnetic resonance experiments, the magnetic field is generally composed of a constant
component (B0) taken to be in the ẑ direction and a rotating component (B1) in the per-
pendicular direction taken to be in the x− y plane. Suppose that the rotation frequency is
denoted by Ω, the magnetic field can be written:

B = B1(cos(Ωt)x̂ + sin(Ωt)ŷ) + B0ẑ, (4)

where it is generally assumed that B0 >> B1. For this field, the interaction Hamiltonian
can be written:

H = −µeB · ~σ ≡ −µe

(
B0 B1e

−iΩt

B1e
iΩt −B0

)
. (5)

We would like to solve the time-dependent Schrödinger equation:

ih̄
∂Ψ(t)

∂t
= HΨ(t). (6)

In order simplify the mathematics, we notice that(
B0 B1e

−iΩt

B1e
iΩt −B0

)
=

(
e−iΩt/2 0

0 eiΩt/2

)(
B0 B1

B1 −B0

)(
eiΩt/2 0

0 e−iΩt/2

)
. (7)



Similarly, we can write,

ih̄
∂Ψ(t)

∂t
=

(
e−iΩt/2 0

0 eiΩt/2

){
ih̄

∂

∂t
−
(

−h̄Ω
2

0
0 h̄Ω

2

)}(
eiΩt/2 0

0 e−iΩt/2

)
Ψ(t). (8)

Defining a transformed wave function Ψ′

Ψ′ ≡
(

eiΩt/2 0
0 e−iΩt/2

)
Ψ(t), (9)

the differential equation that must be solved to find the solutions to the Schrödinger equation
can then be written:

ih̄
∂Ψ′(t)

∂t
=

(
−µeB0 − h̄Ω

2
−µeB1

−µeB1 −(−µeB0 − h̄Ω
2

)

)
Ψ′(t) ≡ HeffΨ′(t). (10)

The transformed wave function Ψ′ can be interpreted as representing the spin in a rotating
coordinate system in which the effective Hamiltonian is now independent of time. Solving
the differential equation (10), we find

Ψ′(t) = e−iHefft/h̄Ψ′(0), (11)

where Ψ′(0) denotes the initial value of the transformed wave function and where the expo-
nential function must be evaluated by taking its Taylor series expansion. Consider a general
2× 2 matrix of the form

m ≡
(

a b
b −a

)
. (12)

The exponential of m can be evaluated:

e−im ≡ 1− im− 1

2!
m2 − 1

3!
m2(−im) +

1

4!
(m2)2 · · · (13)

For our form of m, all even terms are diagonal,

m2 =

(
a2 + b2 0

0 a2 + b2

)
≡ (a2 + b2)

(
1 0
0 1

)
, (14)

and all odd terms are proportional to m itself, so that we can simplify the expansion by
summing the odd and even terms separately:

e−im = cos(
√

a2 + b2)

(
1 0
0 1

)
− i

sin(
√

a2 + b2)√
a2 + b2

(
a b
b −a

)
. (15)

Defining the simplifying notation, Ω0 ≡ −2µeB0/h̄, Ω1 ≡ −2µeB1/h̄, ΩT ≡
√

(Ω0 − Ω)2 + Ω2
1,

cos(θ0) ≡ (Ω0−Ω)/ΩT , and sin(θ0) ≡ Ω1/ΩT , we can write the full solution to the Schrödinger
equation in the form

Ψ(t) =

(
e−iΩt/2 0

0 eiΩt/2

){
cos(ΩT t/2)

(
1 0
0 1

)
− i sin(ΩT t/2)

(
cos(θ0) sin(θ0)
sin(θ0) − cos(θ0)

)}
Ψ(0).

(16)

For the special value of the rotational frequency Ω = Ω0, the general result 16 simplifies to

Ψ(t) =

(
e−iΩ0t/2 0

0 eiΩ0t/2

)(
cos(Ω1t/2) −i sin(Ω1t/2)
−i sin(Ω1t/2) cos(Ω1t/2)

)
Ψ(0). (17)


