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Notes on quantum treatment of spin
transitions

Reference: Charles P. Slichter, Principles of Magnetic Resonance, Harper & Row, 1963.

In the following, we will use the following Pauli spin matrices:
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In terms of these matrices, the electron magnetic moment can be written:

fi= WTBE = pe(0,X + 0, + 0.2), (2)
where g = —2.0023 denotes the electron g-factor, up = 5.788 x 107° eV/T is the Bohr
magneton, and g, = —5.795 x 107° eV/T is the electron magnetic moment. This same
formalism can also treat nuclear spin—1/2 systems, with gyuy replacing gup. The nuclear
magneton py = 3.152 x 107 eV/T and Gproton = 9.986, Gneutron = —3.826. In the following,
we write the explicit formulas in terms of the electron intrinsic magnetic moment, but the
same formulation could be applied to other spin—1/2 systems as indicated. The Hamiltonian
which represents the interaction between the electron magnetic moment and a magnetic field
B is given by

H=—ji- B. (3)
In magnetic resonance experiments, the magnetic field is generally composed of a constant
component (By) taken to be in the Z direction and a rotating component (Bj) in the per-

pendicular direction taken to be in the x — y plane. Suppose that the rotation frequency is
denoted by €2, the magnetic field can be written:

B = Bj(cos(t)x + sin(Qt)y) + Boz, (4)

where it is generally assumed that By >> B;. For this field, the interaction Hamiltonian
can be written:
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We would like to solve the time-dependent Schrodinger equation:
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In order simplify the mathematics, we notice that
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Similarly, we can write,
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Defining a transformed wave function W’
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the differential equation that must be solved to find the solutions to the Schrodinger equation
can then be written:
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The transformed wave function W’ can be interpreted as representing the spin in a rotating
coordinate system in which the effective Hamiltonian is now independent of time. Solving
the differential equation (10), we find

W/ (t) = e~ Mere/Ay (), (11)

where U’(0) denotes the initial value of the transformed wave function and where the expo-
nential function must be evaluated by taking its Taylor series expansion. Consider a general

2 x 2 matrix of the form
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The exponential of m can be evaluated:
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For our form of m, all even terms are diagonal,
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and all odd terms are proportional to m itself, so that we can simplify the expansion by
summing the odd and even terms separately:
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Defining the simplifying notation, Qg = —2u.Bo/h, Q1 = —2u.B1/h, Qr = \/(QO — Q)2+ 03
cos(bp) = (Q0—)/Qr, and sin(0y) = Q4 /Qr, we can write the full solution to the Schrodinger
equation in the form

(1) = ( eigtﬂ D ) {COS(QTt/Z) ( - ) — isin(Qt/2) ( ‘;fs((ggg _Sicr;gz%l) )}\I/(O).
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For the special value of the rotational frequency 2 = (g, the general result 16 simplifies to
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