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Notes on numerical solutions of Schrodinger equation

Consider the following one-dimensional Schrodinger equation:
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where V(z) is a given potential function, and E,, is the energy eigenvalue associated with
the eigenfunction 1), (). This can either represent a bound state or a continuum state. One
basic approach to developing accurate numerical approximations to the solution of these

equations is to use a Taylor’s series expansion to relate the behavior of % to 1, (z") for
points z' in the neighborhood of z. Note that for any small distance s,
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This means that if s is small, we can approximate the second derivative according to
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This central difference approximation can be used to solve both bound state and scattering
state solutions of the Schrodinger equation 1. For an an example suppose the we have a
bound state problem with the boundary conditions v,,(0) = v,,(X) = 0 We then divide the
interval 0 < z < X into N intervals with X = (N + 1)s.

Then we can use Eq. (3) to replace the kinetic energy operator. The Schrodinger Equation
then takes the form of a tri-diagonal eigenvalue problem:

Muv, = Ayvp, (4)
where
bl C1 0 0
Qo bg Co 0
M = 0 as b3 C3 .. . (5)
0 0 Qs b4

The diagonal elements are b; = 2 + s?[2mV (is)/h’] and the off-diagonal elements are a; =
¢; = —1. Here it is assumed that X is divided into N intervals with X = (N + 1)s. v,
represents a vector of N coefficients {1, (is)}, with ¢ = 1,2,3...N. The energy eigenvalues
are given by \, = s%[2mE, /h*]. One can show that the error of this numerical procedure is

of order O(s*y™(x)).



By keeping the next even term in the Taylor series expansion, one can derive a Numerov
algorithm for this problem which takes the form:

Mu, = \,Sv,. (6)

Here M is a tridiagonal matrix having the same form as above, and S is a positive definite
tridiagonal matrix having the form:

Bi m 0 0
az P2 2 0 .
S = 0 [0 %] 63 Y3 .. . (7)

0 0 as Ba

In this expression, 3; = 10/12 and «; = v; = 1/12, while b; = 2 + 2s?[2mV (is) /A’
a; = -1+ Ls?[2mV((i — 1)s)/h%], and ¢; = —1 + £s*[2mV ((i + 1)s)/A°]. One can show

that the error of this numerical procedure is of order O(s%)"(z)).



