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Summary of perturbation theory equations

Time independent perturbation expansion

Suppose we have a reference Hamiltonian H, for which we know all of the eigenvalues and

eigenfunctions:
Ho®) = E2P0. (1)

Now we want to approximate the eigenvalues £, and eigenfunctions ®, of total Hamiltonian
H = Ho + H1, where the second term is small compared to the reference Hamiltonian term.
If the n' zero-order eigenstate (E?) is not degenerate, then we can make the following
expansion. We will use the shorthand notation (®)|H;|®2) = Vi,,-
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If, on the other hand, the zero-order eigenstate (EY) is degenerate with one or more other
eigenstates, another method must be used. Suppose there are N such degenerate states which
we will label {Qgi}, where 7 = 1,2,... N. We suppose that we can find N new zero-order
states {®%*} from linear combinations of the original states, by diagonalizing the following
N x N matrix:

Ep, + Varny Vaun, Vo oo Vany Cn, Ch,
.Vnznl .Ev% + Vigns .Vnzn;-z - .VnanN 0.7?2 _ po Cr?z (4)
Vinna Vinns Vinng - EgN + Vanny Cry Cry

The energy eigenvalues { E*} correspond to corrections up to first order in the perturbation
for this system. Each eigenvalue E* corresponds to a linear combination of the zero order
eigenfunctions in terms of the coefficients {Cy }:
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If necessary, these new zero order eigenfunctions can now be corrected to first and higher
order using the non-degenerate formalism.



Variational methods

It is a general property of a Hermitian operator, like the Hamiltonian , that the lowest
eigenvalue Ej satisfies an inequality of the form

(01H]0)
Po < “Cillg)

In this expression ¢ represents a trial wavefunction. The equality holds when ¢ = 1), the
exact ground state wavefunction.

(6)

We can use the inequality of Eq. (6) to actively search for the minimum using variational
techniques. This leads to a very powerful and well-used approximation scheme. To demon-
strate how it works for a simple case, consider the Hamiltonian for a hydrogen atom:

R Ze?
H=— v Z° (7)
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We are interested in finding an approximation to the ground state wavefunction, which we can
assume to be spherically symmetric. For example, suppose that we take a trial wavefunction

of the form
e—a7‘2

o)== (8)

where « is the variational parameter to be determined. We need to carry out the following
integrals:
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Putting all of these results, to gether, we find

GHIG) _, B Ava Ze

FE(a) = =3a— — — . 12
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In order to simplify the notation, we define the Bohr radius:
_ dmegh?
ayg = me2 . (13)

In these terms,

E(a) = ¢ <3aa§—L\/§“°>. (14)



In order to find the minimum value of F(«), we evaluate

dE(a)
= 1
do 0 (15)
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to find 872
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We can then evaluate the minimum energy:
e? 872

E =— —. 17
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This result is 15% higher energy the correct answer, since
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= —0.15. 18
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A plot of the exact and optimized trial wavefunctions are shown below.
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Considering the incorrect shape of the optimized trial wavefunction, the accuracy of the
energy estimate is remarkable.

Summary of time dependent theory equations

Time dependent perturbation expansion

Now suppose that the perturbation depends on time, H(r,t) = Ho(r) + Hi(r,t). The



differential equation we must solve is

., 09(r, 1)
ih 5

= H(r, 1) ®(r, t). (19)

We will again assume that we know all of the eigenvalues and eigenfunctions of the reference
Hamiltonian
HoD? = E)DY. (20)

In this case, the time dependence of the zero order eigenfunctions takes the form:
By (r, ) = 9 (x)e M (21)

The spatial functions @2 (r) form a complete orthonormal set of functions. The full solution
is expected to take the form

B(r,1) = 3 an(t)gh (x)e /M, (22)

where the coefficients a,(t) are to be determined from solution of the first order differential
equation:
day(t)
dt
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At this point, we have not made any approximations. In order to proceed, we expand the
coefficients as a sum of orders of approximation:

an(t) = a9 () + aP(t) + @ (). ... (24)

In general we will assume that the system is initially in a well-defined state of the zero order
Hamiltonian:
Al (t) = Gpm (25)

The equation for the first order coefficient then takes the form:

1 rt (EO_ 0\
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Thus the first order coefficients can be determined from a knowledge of the matrix elements
of the time-dependent perturbation #i(r,t). Higher order corrections can be determined
from the lower order coefficients.

We will consider the first order coefficients for the case in which there is a harmonic time
dependence which is “turned on” at time ¢t = 0:

Hi(r,t) = V(r) (e +e ") (1), (27)

where ©(t) denotes the Heaviside step function. If the system is initially (¢ < 0) in the zero
order state ®°, the effects of the perturbation to first order in V is given by

D, (r,t) ~ @2 (r)e Eatm 13" oD (1)p0 (r)e Emt/n (28)



where .
an ei(wmn—l—w)t -1 ez(wmn—w)t -1

M) = — _
a,’(t) = . 29
In this expression, wp,, = Lﬂ; B For large times ¢, it can be shown that the squared

modulus of the exitation coefficient a{l)(¢) determines the transition rate:
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or
2
Roym = %Wmnl2 (8(ES, — ES + hw) + 6(EY, — B — hw)) . (31)



