1. The figure above shows a scattered particle (mass m_1) with velocity v and angle θ as measured in the lab frame and velocity u and angle χ as measured in the center of mass frame with V denoting the velocity of the center of mass. Assuming that the collision of particle m_1 with the initially stationary particle m_2 is elastic, show that

$$\cos \theta = \frac{\cos \chi + \frac{m_1}{m_2}}{\sqrt{1 + 2 \frac{m_1}{m_2} \cos \chi + \left(\frac{m_1}{m_2} \right)^2}}$$

and

$$\tan \theta = \frac{\sin \chi}{\cos \chi + \frac{m_1}{m_2}}$$